

Programming Language for eigerPanels

Version 1.10, 19.05.2010
update 06.11.2013 1$00

 developed and produced by

 Industriestrasse 49
 CH-6300 Zug
 Switzerland
 www.s-tec.ch
 www.eigergraphics.com

Software Manual
for the eigerVirtualMachine eVM

English Version

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

http://www.eigergraphics.com/

eigerScript methods 1

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Content

Content .. 1
eigerScript ... 3

Short description .. 3
Views .. 3
Syntax coloring ... 4
Data types .. 4
Constants ... 5
Variables .. 5
Registers .. 6

eigerScript Methods ... 7
Class eigerVideoEngine (EVE) .. 7
Class Display.. 8
Class File .. 12
Class String .. 13

The string concept in eigerScript .. 13
Addition of strings .. 13

Class Value .. 24
Class Label ... 27

Description of the eVM registers for a Label .. 27
Fonts on the system ... 31

Class Draw ... 33
Class Math ... 35

Integermath .. 35
Conversions from Long to Integer .. 36
Type conversions ... 37
Calculations ... 39

Class Binary ... 40
Bit functions with 16-bit or 32-bit operands .. 40
Logic functions with 16-bit or 32-bit operands .. 42

Class HotSpot .. 45
HotSpot Groups ... 45
How the HotSpots work.. 45

Class HotKey.. 52
Class Time ... 54
Class Timer .. 57

Timer: EventSection ... 59
Timer: TicSection ... 60

Serial asynchronous Interfaces RS232/RS485 .. 63
Communication modes RS485 .. 64

Class Serial .. 64
Initialize serial interface parameters ... 64
Receive characters .. 65
Send characters ... 65
Send binary data (YMODEM) .. 66

Serial Two Wire Interface I2C .. 69
Class I2C .. 69
Class Colors_15 ... 71

Change colours .. 71
Manipulate colour channels ... 74
Set or get colour values ... 78
Exchange colour channels ... 80

Class InOut ... 83
Class Fill ... 84
Class Load ... 85

http://www.eigergraphics.com/

2 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Class Transfer .. 87
Program control flow ... 88
Error handling ... 91
Debugging code ... 92

Turn debug mode OFF/ON .. 92
Working with CSV-Files ... 93

What are CSV-Files ? .. 93
Class CSV .. 95

Analyse table ... 95
Retrieve data from the table ... 96
Search data in the table ... 98
Replace data in the table ... 99

Revision History ... 100
Support .. 100

http://www.eigergraphics.com/

eigerScript methods 3

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

eigerScript

Short description

eigerScript is a programming language for the eiger virtual machine eVM. With this virtual
machine the eiger System is programmed. An eigerScript program is composed out of
comprehensive methods. The integrated development environment IDE is called . It
features syntax colouring. The source code file *.EVS however is a plain ASCII-File. With eiger Tip
the methods can be quickly selected from a list and the input parameters for the method are
shown. The eigerCompiler, which is also part of the eigerStudio, compiles the *.EVS source file to
a binary file (*.EVI). This binary file is executed from the eVM.

The commands in the eigerScript language are calls to a large library of methods already
resident in the ROM of the microcontroller. For example such a command gets an image file from
the CompactFlash card (CFC) and displays it on the screen. With just a few bytes this operation
can be performed.

The more powerful the instructions are, the shorter is the instruction code and the time for
decoding the instruction is neglectable compared to the work done by the method. In other words,
the overhead is minimized having powerful instructions. The strict separation of the user program
code and the virtual machine needs no painful system integration on the microprocessor. Just
plug in the CFC and the system runs. With eigerScript quick responding graphical user interfaces
GUI’s can be realized in a sensational short time. Because of using an industrial microprocessor
the system is energy efficient and long-term available. The typical lifetime of a microprocessor
family is +15 years. With eigerScript on the eigerPanel touch screen solutions are interesting even
for lower volume applications as exist in building automation.

Views

The FOX embedded computers need only a small main memory since the single views are
acting as a separate program. When changing a view the eVM reads the needed resources from
the CFC and renders the code. The great advantage of this concept is that it takes each time the
same time to display a view. As in the www the data of the view is requested in the moment it is
needed. On the CFC there is nearly no limit of space compared to the file sizes of the compact
byte code of the eVM.

If new views are added the system behaves in the same quick manner. Hundreds of views can
be stored on the CFC.

Updating a customers system can be done as attached ZIP-File in an email. After unzipping
the file and storing it on the CFC it can be plugged in the CFC socket of the FOX embedded
computer and the update is done.

http://www.eigergraphics.com/

4 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Syntax coloring

The text editor of eigerStudio colors your programming script automatically according to a
given syntax coloring scheme. If you like you can customize the syntax coloring scheme any time
(Extras > Options) .

The default syntax color scheme of eigerStudio is as following:

In this document you find the programming texts colored according to the standard syntax coloring
scheme of eigerStudio.

Data types

In a computer system the data is represented by variables. The variables must be in a suitable
data type. In eigerScript there are data types such as INTEGER, LONG, SINGLE (precision
floating point) and STRING. The programmer is responsible of using the most suitable data type
for the representation of real-world data.

Example: The voltage measurement can be represented by a SINGLE data type.

A counter counts cars in parking for example. So INTEGER is the suitable data type

eigerScript has the following data types:
 - Byte range 0..255, ASCII Characters
 - Integer range 0..65535 or -32768..32767
 - Long range -2147483648..2147483647
 - Single Single precision floating-point Number
 - String Character strings, up to 65'534 Chars

VarInt VarInt may be: Integer number
 Register starting with eI.*
 Variable

VarLong VarLong may be: Long Integer number
 Register starting with eL.* (not yet available)
 Variable

VarSingle VarSingle may be: single precision floating point number
 Register starting with eS.* (not yet available)

http://www.eigergraphics.com/

eigerScript methods 5

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

 Variable

VarString VarString may be: String constant
 String variable
 String Register e$.* (not yet available)

Constants

Constants are defining values. In the eigerSystem many colours are predefined as system
constants. As example the colour “blue” is defined by the value of 0x7C00. The programmer can
define his own constants and use them in the source code.

Constants are computed by the compiler of eigerStudio at compile time with floating point
accuracy.

Example: In a project buttons are used. Instead of the numeric value of the size you can
define constants, for example named by BUTTON_W and BUTTON_H, which represent the size
of the button. All buttons of the same size are referenced with BUTTON_W and BUTTON_H
constants. So changes can be done quickly without having to search through the whole source
code.

CONST BUTTON_W = 120 ; Width of the button
CONST BUTTON_H = 36 ; Height of the button

 Load.Width_Height(BUTTON_W,BUTTON_H) ; load Width and Height

If buttons of the same size are drawn on one view, constants are used. If the size or colour of a
button has to be changed, only the value of the constant need to be changed and the program
can be recompiled.

Constants can be of different data types. The compiler assigns the correct data type to the
variable.

CONST MyInteger = 50 ; MyInteger has the Startvalue 50
CONST MyLong = 150000 ; MyLong has the startvalue 150000
CONST MySingle = 3.1415 ; MySingle has the startvalue 3.1415

Variables

Variables are memory locations that could be preassigned with a value. During run time
variables hold results of calculations as example. In eigerScript variables are defined as follows:

INTEGER MyInteger = 50 ; MyInteger has the startvalue 50
LONG MyLong = 150000 ; MyLong has the startvalue 150000
SINGLE MySingle = 3.1415 ; MySingle has the startvalue 3.1415

http://www.eigergraphics.com/

6 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Registers

The eVM has a set of registers. The registers have predefined functions and are available
without defining them in the user program. For example the registers eI.Pos_X1 and
eI.Pos_Y1 hold a coordinate pair for drawing graphics. Some instructions read registers and put
their result back in the registers.

The contents of registers “survive” a view change (GotoView()) but not a project change
(GotoProject(MYPR,3)) nor a restart of the system.

Index of eVM-registers mentioned in this Software Manual:

eI.BackColor 27, 29, 86
eI.BackgroundColor .. 27
eI.BacklightIntensity 9
eI.BacklightIntensity_

MAX 9
eI.BacklightIntensity_

MIN 9
eI.BacklightIntensity_

Speed 9
eI.BacklightIntensity_

Timer 9
eI.Boolean 21, 98
eI.BorderStyle 28
eI.Brightness 9
eI.DATE 55, 56
eI.DecimalSeparatorCha

r 20
eI.Display_DumpMode . 10
eI.Display_WriteMode 10
eI.DisplayColor . 8, 29,

84
eI.DOW 55
eI.ErrorCode ... 17, 18,

20, 24, 25, 26, 91
eI.eVM_DebugMode 92
eI.FillChar 19, 20
eI.FillColor ... 27, 29,

34, 84, 86
eI.FontNumber .. 27, 31,

32

eI.Garbage 16
eI.HalfAxis_a 35
eI.HalfAxis_b 35
eI.Height . 10, 11, 12,

46, 47, 86, 87
eI.HK_Tag 52
eI.HorizontalAdjust 28
eI.HotSpotGroup 45, 46,

49, 51
eI.HotSpotTag .. 46, 49
eI.HOURS 55, 56
eI.HS_... registers 52
eI.HS_EventType 47
eI.HS_Group 51
eI.HS_Height 46
eI.HS_ID 46
eI.HS_Pos_X 46
eI.HS_Pos_Y 46
eI.HS_State 46
eI.HS_Tag .. 45, 46, 49
eI.HS_Width 46
eI.LineColor .. 27, 29,

33, 34, 35, 84, 86
eI.MIN 55, 56
eI.MONTH 55, 56
eI.Mouse_X_Down 83
eI.Mouse_Y_Down 83
eI.MSEC 55, 56
eI.NumericChar 20

eI.Offset_X 10, 11, 46,
86, 87

eI.Offset_X1 27
eI.Offset_Y 10, 11, 46,

86, 87
eI.Offset_Y1 27
eI.Pos_X1 .. 10, 11, 12,

27, 33, 34, 35, 46,
47, 85, 86, 87

eI.Pos_X2 33
eI.Pos_Y1 .. 10, 11, 12,

27, 33, 34, 35, 46,
47, 85, 86, 87

eI.Pos_Y2 33
eI.Position 28
eI.Radius 34
eI.SEC 55, 56
eI.SpaceLeft 28
eI.SpaceRight 28
eI.Status .. 24, 25, 26,

37, 91
eI.TextColor ... 27, 29,

84, 86
eI.VerticalAdjust ... 28
eI.Width ... 10, 11, 12,

46, 47, 86, 87
eI.XSTART 7
eI.YEAR 55, 56

Registers are kind of “super global” variables. An integer value stored in a register survives a

view change and even a project change until another value is set and until the eigerPanel is shut
down respectively.

Most registers are reserved for specific functions and properties. Following registers are for
free use:
eI.R00 eI.R05 eI.R10 eI.R15
eI.R01 eI.R06 eI.R11 eI.Garbage
eI.R02 eI.R07 eI.R12
eI.R03 eI.R08 eI.R13
eI.R04 eI.R09 eI.R14

http://www.eigergraphics.com/

eigerScript methods 7

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

eigerScript Methods

In this chapter you find the eigerScript methods described. The methods are assigned to
different classes according to their function. This is a great help to orientate within the eigerScript.
For example if you want to implement a serial interface the methods of class Serial are certainly of

first choice.

Some methods are highlighted by blue and some by yellow bars. Yellow bars signalize
those methods, which are – in our opinion – the most important.

At some methods you find the version number of the eiger virtual machine (eVM) from
which on the method is can be used. The actual eVM version on your eigerPanel is
indicated at the top of the screen while the system is booting (e.g. eigerVM V1.00).

Class eigerVideoEngine (EVE)

This methods interact directly with the eigerVideoEngine EVE. With the methods of this class
the behaviour of the graphics are controlled.

EVE.Init() 0$40

The EVE.Init method puts the horizontal start position to zero and resets the eI.XSTART
register. The write mode is set without transparency and not inverted. The transparent mode is set
to “transparence disable” and the AVR and the RVR video memory are written simultaneously.
After this method the graphics are ready to use. It is recommended to initialize the graphics in the
beginning of a new view in order to prevent previous views with different settings to disturb the
result of the rendering of a view.

EVE.Load_XSTART (VarInt:X-Position)

The video memories AVR and RVR have 1024 pixels in the X-direction (landscape). With this
method the start of the displayed region is controlled. If the sum of the start position and the image
width is greater than 1024, the image is scrolled.

EVE.WriteEnable_AVR()

With the method EVE.WriteEnable_AVR() the write access to the readable AVR-Video-
RAM is enabled. The writing to the RVR is disabled. With this method a view can be prepared in
the background. With the Display.Show()-method the view can be displayed. See also
Display.Prepare().

0$50

http://www.eigergraphics.com/

8 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

EVE.WriteEnable_RVR()

With the method EVE.WriteEnable_RVR() the write access to the RVR-Video-RAM is
enabled and the write access to the AVR-Video-RAM is disabled. This method can be used to
write pop-ups as controls or warnings on the display without destroying the background. A similar
method is Display.Direct().

EVE.WriteEnable_AVR_RVR()

With the method EVE.WriteEnable_AVR_RVR() the write access is enabled in both Video-
RAM’s. This is the normal operating mode after EVE.Init. The EVE graphics engine without time
delay doubles the video content. In this way there is an original and a copy of the data. The copy
is displayed and if disrupted by a pop-up, it can be restored from the original, which is stored in
the AVR video RAM.

EVE.Load_Transparence()

With the method EVE.Load_Transparence() the EVE graphics engine is programmed to
load the transparence colour in the video-RAM. This method is used, when not rectangular
shapes are used as sprites. Normally this mode is off.

EVE.Process_Transparence()

With the method EVE.Process_Transparence()the EVE graphics engine is programmed
that the transparence colour is not loaded in the video-RAM when a transparent pixel is written to
the EVE. This is the normal configuration after EVE.Init. With this setting it is possible to
write on an image background.

Class Display

Methods of class “Display” control the behaviour of the display content.

Display.Clear() 0$40

With the method Display.Clear()the content of the screen is cleared with the colour stored
in the register eI.DisplayColor. After a reset the register eI.DisplayColor is set to silver
as default.

http://www.eigergraphics.com/

eigerScript methods 9

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Example: Display.Clear() ; Display is cleared

Remark:

The size of the screen is defined in the firmware, thus the programmer has not to bother about
the screen size.

Display.ClearColor(VarInt:Color)

With the method Display.ClearColor() the screen is cleared (filled) with the colour given
as parameter.

Example: Display.Clear(blue) ; display is cleared with blue colour

Display.SetBrightness()

For FOXS computer with CCFL Backlight TFT this method will set the intensity of the backlight
stored in the eI.Brightness register from 0..0x0F with 0 full dark and 0x0F full bright.

Display.BacklightIntensity_Set(VarInt:Intensity)

Since eVM V1.01 this method sets the backlight intensity for TFT-panels with LED backlight.
The register eI.BacklightIntensity holds the current value of the backlight intensity.

• The register eI.BacklightIntensity_MAX holds the value for the maximum
brightness

• The register eI.BacklightIntensity_MIN holds the value for the minimum
brightness

• The register eI.BacklightIntensity_Timer holds the time in seconds until the
backlight is dimmed after no touch event is occurred.

• The register eI.BacklightIntensity_Speed holds the value in ms for dimming the
display

Display.Prepare()

The video memory consists of two video planes called AVR (accessible video RAM) and RVR
(refresh video RAM). While the content of the AVR is visible on the display, the content of RVR is
not visible as long it is not copied to the AVR. The microcontroller can read and write the AVR but
only perform writes to the RVR. The video controller uses the RVR to refresh the display..

The method Display.Prepare() disables the write access to the RVR and only the AVR is
written. The method Display.Show() copies the content of the AVR to the RVR and the content
can be seen on the display. This way you can prepare the layout of your view (e.g. background

http://www.eigergraphics.com/

10 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

picture and buttons and labels etc.) on the “hidden” RVR and than instantly make the whole layout
visible on the display by copying to the AVR.

The register eI.Display_WriteMode is set to Write_To_AVR.

Display.Direct()

The method Display.Direct() disables the write access to the AVR video RAM. All
Outputs are directly visible on the display. The method is used to show a pop-up without
overwriting the original display content in the AVR. With the method Display.Show() the
content of the AVR is copied to the RVR and the original content is restored. For the user the
effect is that the popup disappears.

A CallSubroutine() saves the state of the write mode and restores it after returning.

With the register eI.Display_DumpMode , which is per default set on false, it can be
selected whether the method works normal or when set true all writes are to the AVR and the
RVR video RAM. (eI.Display_DumpMode := true).This is useful to document views with
pop-up menus with the screenshot function. The register eI.Display_WriteMode is set to
Write_To_RVR.

What is AVR and RVR? Display.Prepare()

Display.Show()

The method Display.Show() copies the content of the AVR to the RVR video RAM and
makes it visible for the user. This method is used in combination with the methods
Display.Prepare() or Display.Direct(). See also the description for these methods.

With the method the whole screen is copied. The similar method Display.ShowWindow()
copies only a window of the screen.

Display.ShowWindow()

The method Display.ShowWindow() copies a rectangular window of the AVR to the RVR
video RAM and thus makes the window visible to the user. The parameters for the method are
written in the following registers:

 eI.Pos_X1 X-position upper left corner
 eI.Pos_Y1 Y-position upper left corner
 eI.Offset_X Offset X
 eI.Offset_Y Offset Y
 eI.Width width
 eI.Height height

Tip: When a label is often refreshed to display a changing value, the method can be used to
prevent the label from flickering.

http://www.eigergraphics.com/

eigerScript methods 11

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Display.CopyWindow()

The method Display.CopyWindow() copies a rectangular window of the display to another
place on the display. The parameters for the method are written in the following registers:

 eI.Pos_X1 X-position upper left corner
 eI.Pos_Y1 Y-position upper left corner
 eI.Offset_X Offset X
 eI.Offset_Y Offset Y
 eI.Width width
 eI.Height height
 eI.Pos_X2 X-position upper left corner of the target window
 eI.Pos_Y2 Y-position upper left corner of the target window

Example:

 Load.Geometry_XYWH(300, 200, 50, 800) ; window to be copied
 Load.Pos_X2Y2(400, 300) ; target position for copied window
 Display.CopyWindow() ; executes the copy process

http://www.eigergraphics.com/

12 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Class File

With the methods of the class File the content of the CompactFlash card is accessed.

There are specialized methods to read a graphics file and put it in the video RAM or to read a
Comma Separated Value file (*.CSV). This file type can be read and written by Excel and with the
*.CSV it is possible to have access to data stored in spread sheet tables. See class CSV for
further information (p. 95).

File.Read_EGI(VarStr:FileName)

The method File.Read_EGI(FileName) reads a graphic image in the *.EGI-format and
writes it directly to the video RAM. The method is optimized for speed with the file system and the
display driver software working closely together.

 eI.Pos_X1 X-position upper left corner
 eI.Pos_Y1 Y-position upper left corner

As side effect the method puts the width and the height of the image to the following registers:
 eI.Width Width of the image
 eI.Height height of the image

Tip: The registers can be used to draw a border around the picture or to install a hotspot on the
picture.

The FileName String can be of the following structures:
 File.Read_EGI('C:\\TG12\\IMAGE_A.EGI') ; whole path
 File.Read_EGI('IMAGE_B.EGI') ; short form: IMAGE_B is in same folder
 File.Read_EGI('C:\\PICT\\IMAGE_C.EGI') ; IMAGE_B is in another folder
 File.Read_EGI('C:\\TG12\\PICT\\IMAGE_D.EGI') ; IMAGE_B is in a subfolder

Possible errors: The method can indicate the following errors (see error handling for details):

 ERR_File_CFC_missing CFC is missing

ERR_File_not_found File is not found
 ERR_eVM_EGI_corrupt EGI is corrupt

File.DeleteFile(VarStr:FileName)

The method File.DeleteFile(FileName) deletes a file with a given filename.

Example:

 File.DeleteFile('C:\TG12\DATA\TEST.TXT') ; delete file TEST.TXT

http://www.eigergraphics.com/

eigerScript methods 13

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Class String

The methods of the class string use arrays of characters to perform their operations. With
eigerScript every string has its own buffer length. It is not possible to have strings with more
characters than the buffer length stored in a string. Internally the string is terminated with a NUL
0x00 character. The user doesn’t have to bother about this string termination. A string can contain
up to 65'534 Characters. Thus even small files can be stored in a string.

The methods of the class string are used to manipulate incoming and outgoing strings and to
combine texts with numeric representations of variables.

STRING [10] MyString.$ = 'HELLO'

With this declaration a string is declared with the name MyString.$ and the buffer length of 10
characters. The string is initialized to the value ‘HELLO’. This shows the difference between the
string length (=5) and the buffer length(=10). If there is no buffer length specified the buffer length
is assigned to 256 by default. Especially when short strings are used this may mean a waste of
memory.

For indexing single characters in a string the position of the character is used. Please note that
the first character is on position 1 while the last character of the string is at the position, which
corresponds to the string length. The character O of the string 'HELLO' is at position 5.

The string concept in eigerScript

Strings are the starting point of data being rendered on the display screen, transmitted over
serial communication lines, protocols or data storage. With the methods of the class Strings the
character arrays (strings) can be manipulated, interpreted, cut, chained etc. In this way values
transmitted by a connected system can be extracted from a command set or strings for a
communication can be formed.

In eigerScript a string has a header, which stores information about the string, as for example
the buffer length. The buffer length is used to prevent a memory overflow when a long string is
assigned to a short string. The operation is performed on a “best effort” basis. A warning can be
analyzed after the method. This feature frees the user of many code lines of error handling
although having a robust system.

For extracting numeric values out of a string, please refer to the class Value (p. 24).

Addition of strings

Strings can simply be merged by adding one String to another with “+” or “&”. This operation is
limited to two Strings. The addition of three String needs to be done in 2 steps.

Index (Position of Characters)

Byte-Position

http://www.eigergraphics.com/

14 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Examples:
 STRING [32] StringA.$ = 'TextA'
 STRING [32] StringB.$ = 'TextB'
 STRING [32] StringAB.$ = ''

 StringAB.$:= StringA.$ + StringB.$; Result: TextATextB

or
 StringAB.$:= StringA.$ & StringB.$; Result: TextATextB

Str.Copy(VarStr:Target,VarStr:Source)

The method Str.Copy(TargetString,SourceString) is used to copy the source string
to the target string. If the target string is shorter than the source string, this method copies as
many characters as find space in the target string. The method overwrites the previous content of
the target string.

Str.CopySubstringWord(VarStr:Target,VarStr:Source,
VarInt:pos)

The method Str.CopySubstringWord(targetstring,sourcestring,position)
appends the word starting at the position of the source string to the target string. If the target string
is too short or too full to contain the word, as many characters as possible are copied to the target
string.

Example:
; Declaration of TargetString:
STRING [30] Text_1.$ = 'Button 1'
; Deklaration of SourceString :
STRING [30] Text_2.$ = 'abcd'

; appending part of SourceStr to TargetStr:
Str.CopySubstringWord(Text_1.$,Text_2.$,3)

Content of TargetString after using the method abouve: Text_1.$ = Button 1cd

Str.Length(VarInt:Length,VarStr:source)

The method Str.Length(Length,SourceString) is used to evaluate the number of
characters in a string. All characters except the terminating NUL-Character count for the string
length. Str.Length(Lenght.I,'Hello') evaluates Length.I = 5.

http://www.eigergraphics.com/

eigerScript methods 15

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Str.BufferLength(VarInt:Lenght,VarStr:SourceString)

The method Str.BufferLength(Length,SourceString) replies with the buffer length as
defined in the string declaration. It corresponds to the maximum number of characters to be stored
in this string.

Str.SpaceInString(VarInt:space,VarStr:SourceString)

The method Str.SpaceInString(Space,SourceString) replies the number of
characters that can be stored in the string until it is full. The return value is the difference of the
Buffer Length and the String Length.

Str.Clear(VarStr:TargetString)

The method Str.Clear(TargetString) clears the target string. The first character in the
string is NUL, thus the length is 0. The buffer size remains unchanged.

Str.AddChar(VarStr:TargetString,VarInt:Character)

The method Str.AddChar(TargetString,VarInt) adds a character to the target string. If
there is no space left in the string, the character will not be added.

Example 1:

Str.AddChar(MyString.$,"A")
The character “A” is added to MyString.$

Example 2:
Str.AddChar(MyString.$,0x41)

The character “A” is added to MyString.$. The ASCII value of A is 0x41.

Str.Add_CRLF(VarStr:TargetString)

The method Str.Add_CRLF(TargetString) adds a carriage linefeed to the targetstring;
one Character for CR and one character for LF. If there is no space left in the string for at least
two characters, CRLF will not be added.

What is CRLF?

CR = Carriage return > other formats: '\r', 0x0D, 13 in decimal

LF = Line feed > other formats: '\n', 0x0A, 10 in decimal

http://www.eigergraphics.com/

16 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Str.FillUpWithChar(VarStr:TargetString,VarInt:Char)

The method Str.FillUpWithChar(targetstring,VarInt:char) fills up the target
string with the specified character until the string is filled according to its buffer length. This
method is useful to fill up a string with space characters.

Example:

 STRING [10] MyString.$ = 'ABC' ; MyString.$ consists of characters
ABC and may contain up to 10 characters

 Str.FillUpWithChar(MyString.$,"*")

 MyString.$ is after the method: ABC*******

Str.RemoveLastChar(VarInt:RemovedChar,VarStr:String)

The method Str.RemoveLastChar(String,VarInt) removes the last character of a
string and returns it to the VarInt parameter specified. If the method is performed on a empty
string the return value is NUL. If the return value is not of interest, the register eI.Garbage can
be used to receive the last character. The method is especially useful to implement a delete
function that deletes the last character.

 Str.RemoveLastChar(eI.Garbage,MyString.$)

Str.Concat(VarStr:TargetString,VarStr:SourceString)

The method Str.Concat(TargetString,SourceString) adds the SourceString to the
TargetString. The method is used to prepare an output to a label. If the sum of lengths of the two
strings (TargetString plus SourceString) is greater than the buffer length of the TargetString, only
as many characters as find space are transferred to the TargetString.

Str.Concat(TargetString,SourceString) ; Strings are concatenated

SourceString

TargetString old

TargetString new

Str.Concat(TargetString,SourceString)

SourceString

TargetString old

TargetString new

Str.RemoveLastChar(eI.Garbage.TargetString)

http://www.eigergraphics.com/

eigerScript methods 17

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Alternatively you may also write:
 TargetString := TargetString + SourceString
 or:
 TargetString := TargetString & SourceString

Possible errors:

The following errors may occur:

a) TargetString was full: eI.ErrorCode == ERR_String_NoSpaceInString
b) TargetString has not enough space: eI.ErrorCode == WAR_String_NotEnoughSpace

Str.UpperCase(VarStr:TargetString)

The method Str.UpperCase(TargetString)converts the characters of the TargetString to
capital characters. The codepage used is the ISO Latin-15 respectively the CP1252. Not only the
characters from a..z are converted to the capitals A..Z, but also the characters in the codepage
with a code above 127 are converted. For example the character ö is converted to Ö. The method
is useful to exclude problems with user inputs in advance of a string comparison.

Str.UpperCase(TargetString) ; converts a string to capitals

Str.LowerCase(VarStr)

The method Str.LowerCase(TargetString) converts the TargetString to small letters.
The codepage used is the ISO Latin-15 respectively the CP1252. Not only the characters from
A..Z are converted to the small letters a..z, but also the characters in the codepage with a code
above 127 are converted. For example the character Ö is converted to ö. The method is useful to
exclude problems with user inputs in advance of a string comparison.

Str.LowerCase(MyString.$) ; MyString.$ is converted to small letters

Str.Compare(VarInt:Result,VarStr,VarStr)

The method Str.Compare(Result,String1,String2) compares strings 1 and 2
character by character. If the strings are identical, that is of the same characters and the same
length, the return integer value is 0. Otherwise the difference of the first differing characters is
returned. This can be used for sorting strings. If the result is negative, the string 1 is after string 2
in alphabetical order.

The method is suitable to compare passwords with user input.

Example:

 Str.Compare(Result.I,MyString.$,'ABC') ; compare MyString.$ with ABC

http://www.eigergraphics.com/

18 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Str.Cvt_ByteHex(VarStr:TargetString,VarInt:Value)

The method Str.Cvt_ByteHex(TargetSring,Integer) adds two ASCII-characters that
represent the value of the input parameter, to a string.

Str.Cvt_ByteHex(MyString.$,eI.R00) ; add eI.R00 hexadecimal to

; MyString.$

 Example: 68

Tip: If the representation 0x68 or 68h has to be used, the string is preloaded with 0x or the
character „h“ is added.

Possible errors: If there is no space in string, the method doesn’t add the characters to the string
and the error code is returned in the register eI.ErrorCode.

Remark I: Only the lower Byte is output.

Remark II: By this method you add the numbers to the string specified, that means you append
the numbers at the end of the already existing string content. If you want to be sure that the string
exclusively contents the numbers added, you may better clear the whole string content in
advance, e.g. by the method Str.Clear(TargetString).

Str.Cvt_WordHex(VarStr:TargetString,VarInt:Value)

The method Str.Cvt_WordHex(TargetString,Integer) adds 4 ASCII-Characters that
represent the value, to a string.

Str.Cvt_WordHex(MyString.$,eI.R00) ; eI.R00 is hexadecimal added to

; MyString.$

 Example: FE68

Tip: If the representation 0xFE68 or FE68h has to be used, the string is preloaded with 0x or
the character „h“ is added.

Possible errors: If there is no space in string, the method doesn’t write to the string and the error
code is returned in the register eI.ErrorCode.

Remark: By this method you add the numbers to the string specified, that means you append the
numbers at the end of the already existing string content. If you want to be sure that the string
exclusively contents the numbers added, you may better clear the whole string content in
advance, e.g. by the method Str.Clear(TargetString).

http://www.eigergraphics.com/

eigerScript methods 19

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Str.Cvt_LongHex(TargetStr,Long)

The method Str.Cvt_LongHex(TargetString,Long) ads 8 ASCII-Characters to the
string, that represent the hex value of the VarLong.

Str.Cvt_LongHex(MyString.$,MyLong.L) ; MyLong.L is added hexadecimal to

; MyString.$

Errors: If there is no space in string, the method doesn’t write to the string and the error code is
returned in the register eI.ErrorCode.

Remark: By this method you add the numbers to the string specified, that means you append the
numbers at the end of the already existing string content. If you want to be sure that the string
exclusively contents the numbers added, you may better clear the whole string content in
advance, e.g. by the method Str.Clear(TargetString).

Str.Cvt_Long(TargetStr,Long,Int)

The method Str.Cvt_Long(TargetString,Long,Positions) adds a Long value to the
TargetString.

Str.Cvt_Long(MyString.$,MyLong.L,8) ; MyLong.L is added decimal

; to MyString.$ with 8 positions

Example: MyLong.L is the number 105'600. The output is with 8 positions. In the example,
MyString.$ contains already: “Counter:”
The register eI.FillChar can be preloaded: eI.FillChar := "*"
MyString after performing the method is then: Counter:**105600

Special case: If the number of positions is 0, then the output is not formatted.

Errors: If there is no space in string, the method doesn’t write to the string and the error code is
returned in the register eI.ErrorCode.
If the number needs more digits than requested positions, the requested positions are filled up
with the character preloaded in eI.NumericChar.

Remark: By this method you add the numbers to the string specified, that means you append the
numbers at the end of the already existing string content. If you want to be sure that the string
exclusively contents the numbers added, you may better clear the whole string content in
advance, e.g. by the method Str.Clear(TargetString).

Str.Cvt_LongDeci(VarStr,VarLong,VarInt,VarInt)

Str.Cvt_Integer(TargetString,Long,LeadingDigits,TrailingDigits) formats
an output of a decimal number represented by a Long with leading and trailing decimals. The
method is useful to output a number, which is internally in another unit.

http://www.eigergraphics.com/

20 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Example: For a payment system the base unit is cent. The price of a product should be
represented in Swiss Francs or in EURO. Internally all calculations are performed in the base unit
MyPrice.L := 13260
The output should be formatted: 132.60.
The method LongDeci consumes the leading and the trailing decimals.

 Str.Cvt_LongDeci(MyString.$,MyPrice.L,3,2)

Example: The value of MyLong.L is 260. The output should be with 4 leading and 2 trailing
decimals. MyString.$ is: Price:
With the register preloaded as: eI.DecimalSeparatorChar := ","
The output then is Price: 2,60

Tip: The register eI.FillChar is preloaded with the character used to fill up unused leading
digits. In the case of preparing a label the register could be preloaded with 0xA0 as FillChar. This
is a space character with the same glyph width as the numeric glyphs. This has the advantage of
the string being always the same string width.

Special case: If the number of leading digits is 0, the output is not formatted.

Possible errors: If there is no space in string, the method doesn’t write to the string and the error
code is returned in the register eI.ErrorCode.
If the number needs more digits than requested positions, the requested positions are filled up
with the character preloaded in eI.NumericChar.

Remark: By this method you add the numbers to the string specified, that means you append the
numbers at the end of the already existing string content. If you want to be sure that the string
exclusively contents the numbers added, you may better clear the whole string content in
advance, e.g. by the method Str.Clear(TargetString).

Str.Cvt_Integer(TargetString,IntegerValue,Digits)

The method Str.Cvt_Integer(TargetString,Integer,Digits) adds the numeric
representation of an integer-number to a string. The number of digits can be set as parameter.

Str.Cvt_Integer(MyString.$,MyInteger.I,4) ; MyInteger.$ is appended to

; MyString.$ in decimal
; 4 digit representation

The behaviour of the method is equal to the method Str.Cvt_Long.

Remark: By this method you add the numbers to the string specified, that means you append the
numbers at the end of the already existing string content. If you want to be sure that the string
exclusively contents the numbers added, you may better clear the whole string content in
advance, e.g. by the method Str.Clear(TargetString).

http://www.eigergraphics.com/

eigerScript methods 21

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Str.Find(VarStr,VarInt,VarStr,VarInt)

Str.Find(CompareString,StartPosition,SearchString,Returnvalue) scans the
CompareString from the StartPosition against the SearchString. If the SearchString is found in the
CompareString the position of the next character after the SearchString is returned. If the
SearchString is not found in the CompareString the return value is 0.

Example:
 Str.Find(InputString.$,1,'Booster',StringPosition.I)
 IF StringPosition.I > 0 THEN

 ; String 'Booster' found
 ELSE

 ; String 'Booster' not found
 ENDIF

Possible errors: If the requested position is greater than the string length, the return value is 0.

Str.Match(VarStr,VarInt,VarStr)

Str.Match(VarStr:CompareString,VarInt:StartPosition,VarStr:SearchString)
is the method, which compares the SearchString from the StartPosition in the CompareString. If
the SearchString matches exactly, the register eI.Boolean is set to true; in all other cases it is
set to false.

Example:
 Str.Match('Watertube',6,'tube')
 IF eI.Boolean == true THEN

 ; tube found !
 ENDIF

Possible errors: If the requested position is greater than the string length, the return value is 0.

Str.GetPosition_by_Char(VarInt:FoundPosition,VarInt:Char
,VarInt:StartPosition,VarStr:InputString)

The method Str.GetPosition_by_Char(FoundPos,Char,StartPos,InpStr) detects
the position of a given character. It starts its search at a given position.

Example:
INTEGER FoundPosition.I
INTEGER Char.I = "n"
INTEGER StartPosition.I = 5
STRING [32] MyString.$ = 'Find Position of my Char'

Str.GetPosition_by_Char(FoundPosition.I,Char.I,StartPosition.I,B02_Text)

Result: FoundPosition.I is 13 (if we set StartPosition.I = 2 then
FoundPosition.I would be 3)

http://www.eigergraphics.com/

22 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Str.SkipBlank(VarStr,VarInt,VarStr)

The method Str.SkipBlank(String,StartPosition,NextPosition) skips the white-
space from the StartPosition until the first non-whitespace-character in the string occurs. If the
string end is reached or the StartPosition is greater than the string length the return value is 0.

Example:

 Str.SkipBlank(' Hello',1,Position.I)

after the method the variable Position.I has the value 5, since four space characters
are skipped.

Following characters are defined as withespace-characters: 0x20 (Space) 0x09 (Tabulator)

and 0xA0 (Space).

Str.Time(VarStr:TargetString,VarInt:FormatTime)

The Method Str.Time(TargetString,FormatTime) is used to fill a string with the current
time. You can choose between four format types:

 FormatTime_XX_XX_XX ; Example: ??:??:?? with eI.FillChar := "?"
 FormatTime_HH_MM_SS ; Example: 21:45:36
 FormatTime_HH_MM_SS_XXX ; Example: 21:45:06.230
 FormatTime_HH_MM ; Example: 08:05

Don’t forget to get the current time and date from the Real Time Clock before using
Str.Time(TargetString,FormatTime). Cf. Time.Get() at p.55 .

Example 1:
 Time.Get() ; gets Time and Date from the Real Time Clock
 eI.FillChar := "?" ; "?" or 0x3F
 Str.Time(Time.$, FormatTime_XX_XX_XX) ; Result: ??:??:??

Example 2:
 Time.Get() ; gets Time and Date from the Real Time Clock
 Str.Time(Time.$, FormatTime_HH_MM_SS) ; Result: 03:58:29

Str.Date(VarStr:TargetString,VarInt:FormatDate)

The Method Str.Date(TargetString,FormatDate) is used to fill a string with the current
Date. You can choose between three format types:

 FormatDate_XX.XX.XXXX ; Example: ??.??.???? with eI.FillChar := "?"
 FormatDate_DD.MM.YYYY ; Example: 12.08.2010
 FormatDate_DD.MM.YY ; Example: 12.08.10

http://www.eigergraphics.com/

eigerScript methods 23

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

 FormatDate_YYMMDD ; Example: 100812
 FormatDate_ISO8601_YYYYMMDD ; Example: 20100812
 FormatDate_ISO8601_YYYY_MM_DD ; Example: 2010-08-12

Don’t forget to get the current time and date from the Real Time Clock before using
Str.Date(TargetString,FormatDate). Cf. Time.Get() at p.55 .

Example 1:
 Time.Get() ; gets Time and Date from the Real Time Clock
 eI.FillChar := "?" ; "?" or 0x3F
 Str.Date(Date.$, FormatDate_XX.XX.XXXX) ; Result: ??:??:????

Example 2:
 Time.Get() ; gets Time and Date from the Real Time Clock
 Str.Date(Date.$, FormatDate_ISO8601_YYYY_MM_DD) ; Result: 2010-12-09

http://www.eigergraphics.com/

24 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Class Value

With the methods of the class Value strings are converted to numeric values of a particular
data type. There are methods to read numeric values in decimal and in hexadecimal
representation.

Value.ByteHex(VarInt:Val,VarStr:Str,VarInt:Pos)

The method Value.ByteHex(VarInt:Val,VarStr:Str,VarInt:Pos) gets two ASCII-
characters from the StartPosition to convert them to a ReturnValue. The characters have to be in
the range [0..9] ¦ [A..F] ¦ [a..f]. The range of the ReturnValue is [0x0000..0x00FF].

Example:
In InputString.$ is 'TEST=A9'
 Value.ByteHex('InputValue.I,InputString.$,6)
 after this method the value of InputValue.I is: 0x00A9.

Possible errors: If there are not two consecutive HEX-Characters, or the position is outside the
string or at the specified position the string end is reached an error occurs. The register
eI.Status := error and the error code is stored in eI.ErrorCode .

Value.WordHex(VarInt:Val,VarStr:Str,VarInt:Pos)

The method Value.WordHex(VarInt:Val,VarStr:Str,VarInt:Pos) gets four ASCII-
Characters from the StartPosition to convert them to a ReturnValue. The characters have to be in
the range [0..9] ¦ [A..F] ¦ [a..f]. The range of the ReturnValue is [0x0000..0xFFFF].

Example:
The content of InputString.$ is: 'TEST=A95e'
 Value.WordHex('InputValue.I,InputString.$,6)
 after this method the value of InputValue.I is: 0xA95E.

Possible errors: If there are not four consecutive HEX-Characters, or the position is outside the
string or at the position the string end is reached an error occurred. The register eI.Status :=
error and the error code is stored in eI.ErrorCode .

Value.LongHex(VarLong:Val,VarStr:Str,VarInt:Pos)

The method Value.LongHex(VarLong:Val,VarStr:Str,VarInt:Pos) gets eight
ASCII-characters from the StartPosition to convert them to a ReturnValue. The characters have to
be in the range [0..9] ¦ [A..F] ¦ [a..f]. The range of the ReturnValue is [0x00000000..0xFFFFFFFF].

Example:
The content of InputString.$ is: 'TEST=A95e76a9'
 Value.LongHex('InputValue.L,InputString.$,6)
 after this method the value of InputValue.L is: 0xA95E76A9.

http://www.eigergraphics.com/

eigerScript methods 25

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Possible errors: If there are not eight consecutive HEX-Characters, or the position is outside the
string or at the position the string end is reached an error occurred. The register eI.Status :=
error and the error code is stored in eI.ErrorCode .

Value.UInteger(VarInt:Number,VarStr:Str,VarInt:Pos)

The method Value.UInteger(VarInt:Number,VarStr:Str,VarInt:Pos) reads
ASCII-characters from the StartPosition and converts them to an unsigned integer number. The
characters have to be numeric digits in the range of [0..9]. The return value has a range of
[0..65535].

Example:
The content of InputString.$ is: 'TEST= 675'
 Value.UInteger(InputValue.I,InputString.$,6)
 after this method the value of InputValue.L is: 675.

Possible errors: If a number is too large for the representation by an unsigned integer or the
position is outside the string an error occurs. The register eI.Status := error and the error code
is stored in eI.ErrorCode .

Value.Integer(VarInt:Number,VarStr:Str,VarInt:Pos)

The method Value.Integer(VarInt:Number,VarStr:Str,VarInt:Pos) reads ASCII-
characters from the StartPosition and converts them to a signed integer number. The characters
have to be numeric digits in the range of [0..9]. The return value has a range of
[-32’768..0..32’767].

Example:
The content of InputString.$ is: 'TEST= -675'
 Value.Integer('InputValue.I,InputString.$,6)
 after this method the value of InputValue.I is: -675.

Possible errors: If a number is too large for the representation by a signed integer or the position
is outside the string an error occurres. The register eI.Status := error and the error code is
stored in eI.ErrorCode .

Value.Long(VarLong:Number,VarStr:Str,VarInt:Pos)

The method Value.Long(VarLong:Number,VarStr:Str,VarInt:Pos) reads ASCII-
characters from the StartPosition and converts them to a unsigned long number. The characters
have to be numeric digits in the range of [0..9]. The return value has a range of
[-2’147’483’648..0.. 2’147’483’647].

Example:

http://www.eigergraphics.com/

26 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

The content of InputString.$ is: 'TEST= 100675'
 Value.Integer(InputValue.L,InputString.$,6)
 after this method the value of InputValue.L is: 100675.

Possible errors: If a number is too large for the representation in a unsigned integer or the position
is outside the string an error occurred. The register eI.Status := error and the error code is
stored in eI.ErrorCode .

http://www.eigergraphics.com/

eigerScript methods 27

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Class Label

With the methods of the class label, Buttons and texts can be rendered on the display. The
label object is quite flexible but for this a bit more complex. Sixteen registers of the eVM describe
the attributes of the object. Note that all geometric dimensions are given in pixels.

Description of the eVM registers for a Label

Position:

The registers eI.Pos_X1 and eI.Pos_Y1 define the position of the upper left corner of the
rectangle defining the label. The absolute X/Y-position on the display screen is the sum of the
position register pair and the X/Y-Offset register pair, that is eI.Offset_X1 and eI.Offset_Y1.

Size:

For the width and the height of the label object the registers eI.Width and eI.Height are
preloaded with the appropriate pixel values.

Colours:

The label object is characterized by four colours:

eI.FillColor colour of the body of the label
eI.LineColor colour of the outline if the label
eI.BackColor colour of the text background of the label
eI.TextColor colour of the text on the label
eI.BackgroundColor colour of the background on which the label is rendered.

normally the BackColor is the same as the FillColor.

Font of the text:

The text font can be selected by the register eI.FontNumber. For the details of the installed
fonts see chapter “Fonts on the system”.

eI.Pos_X1

eI.Pos_Y1

eI.Width

eI.Height

eI.SpaceLeft
eI.FillColor eI.LineColor

eI.BackColor eI.TextColor
eI.FontNumber

eI.BorderStyle

eI.BackgroundColor

http://www.eigergraphics.com/

28 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Position of the text:
The rendered text can be positioned on the label with the register eI.Position. The register

can accept the following constants:

 eI.Position := Pos_topleft ; text at upper left corner
 eI.Position := Pos_top ; text at the top centre
 eI.Position := Pos_topright ; text at the upper right corner
 eI.Position := Pos_left ; text at centre of left border
 eI.Position := Pos_center ; text is centred
 eI.Position := Pos_right ; text at centre of right border
 eI.Position := Pos_bottomleft ; text at lower left corner
 eI.Position := Pos_bottom ; text at lower centre
 eI.Position := Pos_bottomright ; text at lower right corner

The registers eI.SpaceLeft and eI.SpaceRight define the distance from the left
respectively from the right border.

The registers eI.HorizontalAdjust and eI.VerticalAdjust define an offset from the

calculated position. With these registers it is possible to have the text rendered e.g. one pixel
more right and down, when a button is pressed. When eI.VerticalAdjust has a large
negative value it is possible to write outside a label what is sometimes useful to write titles over a
label object.

Border styles:

The label has a rendered border. In the register eI.BorderStyle the border style can be
selected.

eI.BorderStyle := border_color_button_soft_raised_big
eI.BorderStyle := border_color_button_soft_sunk_big

 Load.Geometry_XYWH(0,320,640,100)
 eI.FillColor := silver
 Draw.RectangleFilled()

 Load.Geometry_XYWH(20,340,140,50)
 Label.Color (darkturquoise)
 eI.BorderStyle := border_color_button_soft_raised_big
 Label.Box ()

 Load.Geometry_XYWH(180,340,140,50)
 Label.Color (darkturquoise)
 eI.BorderStyle := border_color_button_soft_sunk_big
 Label.Box ()

Example of two buttons with the two BorderStyles that give the effect of a pressed button.

http://www.eigergraphics.com/

eigerScript methods 29

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Label.Color(VarInt:Color) 0$50

The method Label.Color(VarInt:Color) preloads the colour registers of the eVM.

Example:

Label.Color(light_green) ; preload registers with colour as parameter

The registers eI.FillColor, eI.LineColor and eI.BackColor are loaded with the
colour given as parameter.

For eI.TextColor the method Colors_15.AutoColor(VarInt,VarInt) is used that
gives a black or a white text colour for an optimal contrast, depending of the colour (see p.71).

Special case:

Label.Color(transparent) ; load transparency

The registers eI.FillColor, eI.LineColor and eI.BackColor are loaded with
transparency. In that case the colour in the eI.DisplayColor is used as InputValue for the
method Colors_15.AutoColor(VarInt,VarInt). Thus only the text is written on the
background. Attention: if the label is written a second time, the first text is not cleared, as the back
colour is transparent.

Label.GreyColor() 0$50

The method Label.GreyColor() sets the 4 colours in the registers eI.FillColor,
eI.LineColor and eI.BackColor to their corresponding grey values. The method is used to
indicate inactive buttons on an application.

http://www.eigergraphics.com/

30 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Label.Text(VarStr) 0$50

The method Label.Text(VarStr) draws a label with a string. The label is rendered
according to the setting of the eVM-registers.

Example:

 Load.Geometry_XYWH(0,320,640,100)
 eI.FillColor := silver
 Draw.RectangleFilled()

 Load.Geometry_XYWH(20,340,140,50)
 Label.Color (darkturquoise)
 eI.BorderStyle := border_color_button_soft_raised_big
 eI.Position := Pos_left
 eI.HorizontalAdjust := 0
 eI.VerticalAdjust := 0
 eI.SpaceLeft := 8
 eI.FontNumber := Font_Arial_14n
 Label.Text ('Hello world')

Result of the code above

Tip: With the method Fill.LabelParameter() the eVM-register can be efficiently preloaded
from a structure called a style. If some attributes have to be changed, the registers can be
subsequently overwritten with the desired attribute value (see class Fill, p. 84).

Example:

 Fill.LabelParameter (ButtonUp_Style)
 eI.TextColor := red
 Label.Text ('Hello world')

Result of the code above

http://www.eigergraphics.com/

eigerScript methods 31

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Label.Box()

The method Label.Box() renders a label without text but with a border.

Example:

See above

Label.PrintString(VarStr:Text) 0$50

The method Label.PrintString(VarStr:Text) renders a string in a label without
bordering it. The method is used to draw labels with multiple lines.

Label.StringWidth(VarInt:Width,VarStr:Text) 0$50

The method Label.StringWidth(VarStr:Text) computes the width of the text in the
specified string and returns the effective width in pixels. The value is dependent of the selected
font. Since the fonts are proportional the glyph widths are not the same for different characters the
string length doesn’t say much about the effective width of a text.

Example:

 Label.StringWidth(eI.R00,'Colorvectors')
 Debug.Print_IntegerHex('width =',eI.R00)

Application tip:

The method can be used to determine whether a text fits in a label with a fixed width and if the
computed width is greater than the label width, a smaller font is chosen until the text fits in the
label.

Fonts on the system

There are predefined fonts in the firmware of a FOX embedded computer. They can be used
when assigning a font in the label structure (Fill.LabelParameter(labelRelative24)).
Just write the font constant into the register eI.FontNumber and the font is set. When next time
a label method is used it checks whether the font is already in use; if it is different, the font is
installed and the text is rendered with the new font.

The following figure shows the fonts installed on the eigerPanel 57 and the eigerPanel 70.
Please note, that on different computers other fonts may be available, depending on the size of
the ROM.

http://www.eigergraphics.com/

32 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

The following list shows the assignments of the register eI.FontNumber to obtain the font probe
above. One setting can be used at a time.

 eI.FontNumber := Font_Arial_7
 eI.FontNumber := Font_Arial_8
 eI.FontNumber := Font_Arial_10n
 eI.FontNumber := Font_Arial_12n
 eI.FontNumber := Font_Arial_14n
 eI.FontNumber := Font_Arial_16n
 eI.FontNumber := Font_Arial_20n
 eI.FontNumber := Font_Arial_24n
 eI.FontNumber := Font_System_9n
 eI.FontNumber := Font_System_9bd
 eI.FontNumber := Font_System_18bd
 eI.FontNumber := Font_Courier_9n
 eI.FontNumber := Font_DigitalNumbers_16
 eI.FontNumber := Font_DigitalNumbers_24
 eI.FontNumber := Font_DigitalNumbers_32
 eI.FontNumber := Font_DigitalNumbers_64

http://www.eigergraphics.com/

eigerScript methods 33

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Class Draw

The class Draw contains methods to draw geometric objects on the screen. There are methods
to draw pixels, lines, rectangles, circles and ellipsoids. The rectangles, circles and ellipsoids can
be filled.

Draw.Pixel()

The method Draw.Pixel() sets a pixel. The parameters are given as eVM registers.

 eI.Pos_X1 : X-position
 eI.Pos_Y1 : Y-position
 eI.LineColor : colour of the pixel

Example:

Draw a red pixel at XY-position 120/60: .

 eI.Pos_X1 := 120
 eI.Pos_Y1 := 60
 eI.LineColor := red
 Draw.Pixel() ; draw pixel at position, colour specified above

Draw.Line()

The method Draw.Line() sets a line. The parameters are given as eVM registers.

 eI.Pos_X1 : X-startposition
 eI.Pos_Y1 : Y-startposition

eI.Pos_X2 : X-endposition
 eI.Pos_Y2 : Y-endposition
 eI.LineColor : colour of the line

Example:

Draw a red line from XY-position 100/50 to XY-position 200/120:

 eI.Pos_X1 := 100
 eI.Pos_Y1 := 50

eI.Pos_X2 := 200
 eI.Pos_Y2 := 120
 eI.LineColor := red
 Draw.Line() ; draw line at startposition, endposition, colour specified above

http://www.eigergraphics.com/

34 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Draw.Rectangle()

The method Draw.Rectangle() draws a rectangle. The parameters are given as eVM
registers.

 eI.Pos_X1 : X-Position
 eI.Pos_Y1 : Y-Position
 eI.Width : width
 eI.Height : height
 eI.LineColor : colour of the rectangle

Example:

Draw a blue rectangle at position X = 10 / Y = 70 with a width of 100 and a height of 40 pixels:

 Load.Geometry_XYWH(10,70,100,40)
 eI.LineColor := blue
 Draw.Rectangle() ;draw rectangle with position, geometry, colour specified above

Draw.RectangleFilled()

The method Draw.RectangleFilled() draws a filled rectangle. The parameters are given
as eVM registers.

 eI.Pos_X1 : X-Position
 eI.Pos_Y1 : Y-Position
 eI.Width : width
 eI.Height : height
 eI.FillColor : fill colour of the rectangle

Example:

Draw a filled blue rectangle at position X = 10 / Y = 70 with a width of 100 and a height of 40
pixels:

 Load.Geometry_XYWH(10,70,100,40)
 eI.FillColor := blue
 Draw.RectangleFilled() ;draw rectangle with position, geometry, colour specified above

Draw.Circle()

The method Draw.Circle() draws a circle. The parameters are given as eVM registers.

 eI.Pos_X1 : X-position
 eI.Pos_Y1 : Y-position

eI.Radius : radius
 eI.LineColor : line colour of the circle

http://www.eigergraphics.com/

eigerScript methods 35

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Example:

Draw a red circle with center at XY-position 120/60 and a radius of 25 pixels:

 eI.Pos_X1 := 120
 eI.Pos_Y1 := 60
 eI.Radius := 25
 eI.LineColor := red
 Draw.Circle() ; draws a circle at position, radius, colour specified above

Draw.Ellipse()

The method Draw.Ellipse() draws a ellipsoid. The parameters are given as eVM registers.

 eI.Pos_X1 : X-position
 eI.Pos_Y1 : Y-position
 eI.HalfAxis_a : X-halfaxis
 eI.HalfAxis_b : Y-halfaxis
 eI.LineColor : line colour of the ellipsoid

Example:

Draw a red ellipsoid with center at XY-position 120/60, expanse in x = 34 / y=12:

 eI.Pos_X1 := 120
 eI.Pos_Y1 := 60
 eI.HalfAxis_a := 34
 eI.HalfAxis_b := 12
 eI.LineColor := red
 Draw.Ellipse() ; draw ellipsoid at position, size, colour specified above

Class Math

The class Math has methods for converting numeric data types from and to each other.
Mathematical operations are performed by a stack machine built into the eVM. Since data types
are strictly distinguished in EigerScript, type conversions must be explicitly programmed by the
programmer.

Integermath

The integer math works with signed longwords on the stack. This has the advantage that the
user can use integers without bothering about overflows.

http://www.eigergraphics.com/

36 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Special methods for integers:

Math.MIN_Integer(VarInt:MIN,VarInt,VarInt)

The method Math.MIN_Integer(VarInt,VarInt,VarInt) returns the smaller of the two
input numbers.

Math.MIN_Integer(Result.I,Input1.I,16)
; return minimum from Input1.I and 16

Math.MAX_Integer(VarInt:MAX,VarInt,VarInt)

The method Math.MAX_Integer(VarInt,VarInt,VarInt) returns the larger of the two
input numbers.

Math.MAX_Integer(Result.I,Input1.I,16)
; return maximum from Input1 and the number 16

Conversions from Long to Integer

These methods are used for data manipulation. 16-Bit data words can be packed and
unpacked to a long data type.

Math.LWRD_from_Long(VarInt:Target,VarLong:Source)

The method Math.LWRD_from_Long(VarInt,VarLong) loads the integer result from the
bits 0..15 of the longword.

Math.LWRD_to_Long(VarLong:Target,VarInt:Source)

The method Math.LWRD_to_Long(VarLong,VarInt) loads the lower bits 0..15 of the
longword with the integer. The high word remains unchanged.

Math.HWRD_from_Long(VarInt:Target,VarLong:Source)

The method Math.HWRD_from_Long(VarInt,VarLong) loads the integer result from the
bits 16..31 of the longword.

http://www.eigergraphics.com/

eigerScript methods 37

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Math.HWRD_to_Long(VarLong:Target,VarInt:Source)

The method Math.HWRD_to_Long(VarLong,VarInt) loads the higher bits 16..31 of the
longword with the integer. The low word remains unchanged.

Type conversions

Data type conversions are used to convert data types from one representation to another
representation.

Math.CVT_UInteger_from_Long(VarInt:Target,VarLong:Source)

The method Math.CVT_UInteger_from_Long(VarInt:Integer,VarLong:Long) con-
verts a LONG variable to an unsigned-integer-variable. Since the range of Long-variables is much
greater than unsigned integer, an overflow error can occur. The method checks the range and if it
is out of range, the ERR_Math_OutOfRange is set.

Typical code sequence:

 eI.Status := success
 Math.CVT_UInteger_from_Long(TestInteger.I,TestLong.L)
 IF eI.Status == error THEN
 ; out of range
 ENDIF

Math.CVT_Integer_from_Long(VarInt:Target,VarLong:
Source)

The method Math.CVT_Integer_from_Long(VarInt:Integer,VarLong:Long) con-
verts a LONG variable to a signed-integer-variable. Since the range of Long-variables is much
greater than signed integer, an overflow error can occur. The method checks the range and if it is
out of range, the ERR_Math_OutOfRange is set.

typical code sequence:

 IF eI.Status == success THEN
 Math.CVT_Integer_from_Long(TestInteger.I,TestLong.L)
 ENDIF

http://www.eigergraphics.com/

38 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Math.CVT_Single_from_Integer(VarSingle:Target,VarInt:
Source)

The method Math.CVT_Single_from_Integer(VarSingle,VarInt) converts an Inte-
ger-variable to a Single-variable.

Math.CVT_Single_from_UInteger(VarSingle:Target,VarInt:Source)

The method Math.CVT_Single_from_UInteger(VarSingle,VarInt) converts an un-
signed Integer-variable to a Single-variable.

Math.CVT_Single_from_Long(VarSingle:Target,VarLong:Source)

The method Math.CVT_Single_from_Long(VarSingle,VarLong) converts a Long-
variable to a Single-variable.

Math.CVT_Single_from_LongDeci(VarSingle:Target,VarLong:
Source,VarInt:Decimals)

The method Math.CVT_Single_from_LongDeci(VarSingle,VarLong,VarInt) con-
verts a LongDeci-variable to a Single-variable. The decimal position has to be given in the
parameter decimals.

Math.CVT_Long_from_Single(VarLong,VarSingle)

The method Math.CVT_Long_from_Single(VarLong,VarSingle) converts a Single-
variable to a Long-variable. Since „Long“ is a data type for integer numbers no decimals are
converted. The method doesn’t round.

Example:
 Math.CVT_Long_from_Single(Distance.L,Distance.S)

e.g. for Distance.S = 1234.56 the output value for Distance.L is 1234; trailing decimals are neglected.

http://www.eigergraphics.com/

eigerScript methods 39

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Math.CVT_Long_from_Single_Round(VarLong,VarSingle)

The method Math.CVT_Long_from_Single_Round(VarLong,VarSingle) converts a
Single-variable to a Long-variable. Since „Long“ is a data type for integer numbers no decimals
are converted, but the long is rounded up or down.

Example:
 Math.CVT_Long_from_Single_Round(Distance.L,Distance.S)

e.g. for Distance.S = 1234.56, Distance.L gets the rounded up value 1235.

Math.CVT_LongDeci_from_Single(VarLong,VarSingle,VarInt:
Decimals)

The method Math.CVT_LongDeci_from_Single(VarLong,VarSingle,Number of
Decimals) converts a Single-variable to a Long-variable in a way that also decimals are looked
after. Relevant decimals are given as parameter.

Example:
 Math.CVT_LongDeci_from_Single(Distance.L,Distance.S,3)

e.g. for Distance.S = 1234.56, Distance.L the value of 1234560. (factor 1000 greater or 3 decimals greater)

Calculations

Math.MOD_Integer(VarInt:Y,VarInt:A,VarInt:B)

The method Math.MOD_Integer(VarInt:Y,VarInt:A,VarInt:B) returns the remainder
on division of A by B.

Example:
 Math.MOD_Integer(Remainder.I,10,6)

http://www.eigergraphics.com/

40 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Class Binary

The class contains methods for logical bit operations.

Bit functions with 16-bit or 32-bit operands

There exist methods to manipulate Single bits in Integer and Long operands. A bit can be set,
reset or toggled.

Binary.BSET_Integer(VarInt,VarInt:BitNo) 0$35

The method Binary.BSET_Integer(VarInt,VarInt:BitNumber) sets the bit given as
parameter. The correct range for the bit number is 0..15.

Example:

Binary.BSET_Integer(MyInteger.I,3) ; set bit 3
If MyInteger.I is 7 (0000000000000111), the method returns 15 (0000000000001111)
to MyInteger.I

Binary.BGET_Integer(VarInt,VarInt:BitNo,VarInt:Result)0$35

The method Binary.BGET_Integer(VarInt,VarInt:BitNo,VarInt:Result) returns
the bit at a given position. The correct range for the bit number is 0..15.

Example:

Binary.BGET_Integer(MyInteger.I,2,Result.I) ; get bit 2
If MyInteger.I is 7 (0000000000000111), the method returns 1 to Result.I

Binary.BCLR_Integer(VarInt,VarInt:Bit) 0$35

The method Binary.BCLR_Integer(VarInt,VarInt:BitNumber) clears the bit given as
parameter. The correct range for the bit number is 0..15.

Example:

Binary.BCLR_Integer(MyInteger.I,3) ; clear bit 3
If MyInteger.I is 15 (0000000000001111), the method returns 7 (0000000000000111)
to MyInteger.I

Binary.BNOT_Integer(VarInt,VarInt:Bit) 0$35

The method Binary.BNOT_Integer(VarInt,VarInt:BitNumber) toggles the bit given
as parameter. The correct range for the bit number is 0..15.

http://www.eigergraphics.com/

eigerScript methods 41

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Example:

Binary.BNOT_Integer(MyInteger.I,3) ; toggle bit 3
If MyInteger.I is 15, the method toggles between 7 (0000000000000111) and 15
(0000000000001111).

Binary.BSET_Long(VarLong,VarInt:Bit) 0$35

The method Binary.BSET_Long(VarLong,VarInt:BitNumber) sets the bit given as
parameter. The correct range for the bit number is 0..31.

Example (cf Binary.BSET_Integer(..)):

Binary.BSET_Long(MyLong.L,20) ; set bit 20

Binary.BGET_Long(VarLong,VarInt:BitNo,VarInt:Result) 0$35

The method Binary.BGET_Long(VarInt,VarInt:BitNo,VarInt:Result) returns the
bit at a given position. The correct range for the bit number is 0..31.

Example:

Binary.BGET_Long(MyLong.I,20,Result.I) ; get bit 20

Binary.BCLR_Long (VarLong,VarInt:Bit) 0$35

The method Binary.BCLR_Long(VarLong,VarInt:BitNumber) clears the bit given as
parameter. The correct range for the bit number is 0..31.

Example:

Binary.BCLR_Long(MyLong.L,20) ; clear bit 20

Binary.BNOT_Long (VarLong,VarInt:Bit) 0$35

The method Binary.BNOT_Long(VarLong,VarInt:BitNumber) toggles the bit given as
parameter. The correct range for the bit number is 0..31.

Example:

Binary.NOT_Long(MyLong.L,20) ; toggle bit 20

http://www.eigergraphics.com/

42 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Logic functions with 16-bit or 32-bit operands

Integer variables can be logically manipulated. The logic function work bitwise on the operands.

The following table shows how the bits are manipulated. The truth table shows the operation in
the same bit position.

Input B Input A AND OR XOR NOT

0 0 0 0 0 1
0 1 0 1 1 0
1 0 0 1 1 1
1 1 1 1 0 0

Binary.AND_Integer(VarInt:Q,VarInt:A,VarInt:B) 0$35

The method Binary.AND_Integer(VarInt,VarInt,VarInt) logically AND’s the input
operands and stores the result to the output variable. With this method masks can be laid over bit
fields.

Binary.AND_Integer(eI.BackColor,eI.BackColor,0111110000011111B)
; the green bits are cleared

Binary.OR_Integer(VarInt:Q,VarInt:A,VarInt:B) 0$35

The method Binary.AND_Integer(VarInt,VarInt,VarInt) logically OR’s the input
operands and stores the result to the output variable. With this method masks can be laid over bit
fields.

Binary.OR_Integer(eI.BackColor,eI.BackColor,0000001111100000B)
; the green bits are set

Binary.XOR_Integer(VarInt:Q,VarInt:A,VarInt:B) 0$35

The method (exclusive or) Binary.XOR_Integer(VarInt,VarInt,VarInt) logically
XOR’s the input operands and stores the result to the output variable. With this method masks of
bits can selectively be inverted.

Binary.XOR_Integer(eI.BackColor,eI.BackColor,0000001111100000B)
; the green bits are inverted

Binary.NOT_Integer(VarInt:Q,VarInt:A) 0$35

The method Binary.NOT_Integer(VarInt,VarInt) logically inverts the input operand
and stores the result to the output variable. With this method the bits can be inverted.

Binary.NOT_Integer(MyInteger.I,MyInteger.I) ; MyInteger.I is inverted

http://www.eigergraphics.com/

eigerScript methods 43

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Binary.SWAP_BYTE_Integer(VarInt:Q,VarInt:A) 0$35

The method Binary.SWAP_BYTE_Integer(VarInt,VarInt) changes the low and high
byte position of the input parameter to the high and low byte position of the output variable.

Binary.SWAP_BYTE_Integer(MyInteger.I,MyInteger.I)

Binary.AND_Long(VarLong:Q,VarLong:A,VarLong:B) 0$35

The method Binary.AND_Long(VarInt,VarInt,VarInt) logically AND’s the input operands
and put the result to the output variable. With this method masks can be laid over bit fields.

Binary.AND_Long(eI.BackColor,eI.BackColor,0111110000011111B)
; the green bits are cleared

Binary.OR_Long(VarLong:Q,VarLong:A,VarLong:B) 0$35

The method Binary.AND_Long(VarInt,VarInt,VarInt) logically OR’s the input
operands and put the result to the output variable. With this method masks can be laid over bit
fields.

Binary.OR_Long(eI.BackColor,eI.BackColor,0000001111100000B)
; the green bits are set

Binary.XOR_Long(VarLong:Q,VarLong:A,VarLong:B) 0$35

The method (exclusive or) Binary.XOR_Long(VarInt,VarInt,VarInt) logically XOR’s
the input operands and put the result to the output variable. With this method masks of bits can be
inverted.

Binary.XOR_Long(eI.BackColor,eI.BackColor,0000001111100000B)
; the green bits are inverted

Binary.NOT_Long(VarLong:Q,VarLong:A) 0$35

The method Binary.NOT_Long(VarLong,VarLong) logically inverts the input operand and
stores the result to the output variable. With this method the bits can be inverted.

Before SWAP 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

After SWAP 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

http://www.eigergraphics.com/

44 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Binary.NOT_Long(MyLong.L,MyLong.L) ; MyLong.L is inverted

Binary.SWAP_WORD_Long(VarLong:Q,VarLong:A) 0$35

The method Binary.SWAP_WORD_Long(VarLong,VarLong) changes the low and high
word position of the input parameter to the high and low word position of the output variable.

Binary.SWAP_WORD_Long(MyLong.L,MyLong.L)

Before SWAP 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

After SWAP 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

http://www.eigergraphics.com/

eigerScript methods 45

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Class HotSpot

The class HotSpot has methods to create the touch screen interface (GUI) to the user.
HotSpots are rectangular fields that can throw events, when touched. In the eigerOS the touch
panel is permanently scanned for HotSpots that generate events.

In eigerScript there are methods to install HotSpots and methods to remove them. After
changing a view all the HotSpots of the previous view are removed. All HotSpots are managed in
the HotSpotTable internally to the eigerOS.

If the eigerOS finds a HotSpot that generates an event, the event is executed, when there is an
event handler in the eigerScript program. The possible events for a HotSpot are:

 Enter HotSpot is entered
 Leave HotSpot is leaved
 Down Touchdown in the HotSpot
 Up Release of touch action in the HotSpot

The HotSpot events are basically used for two purposes: the animation of the GUI and to take
actions on the GUI.

In the simplest use case, only the touchdown event is handled.

Every HotSpot can store an integer value that is called tag. This tag is returned in the
eI.HS_Tag register. This feature simplifies the programming of HotSpots that have nearly the
same action. Lets think of a numeric keypad. The numeric keys have the same functionality
except for the numeric value of every key that differs. Using the eI.HS_Tag register, the same
event handler can be used for every numeric key.

The geometry of the HotSpot is also returned in special registers.

The HotSpots are stored in the HotSpot table, when installing them. This table is cleared when
the view is leaved, to prevent a new view from reacting on old HotSpots.

The HotSpots have two states: they can be enabled or disabled. When disabled, no event is
generated, when touched. HotSpots are installed with the state "enabled". If a certain HotSpot
should be disabled the method HotSpot.Enable_By_ID(eI.HS_ID) immediately after
installing it disables the HotSpot.

HotSpot Groups

Every HotSpot is part of a group. The group is defined with the value of the register
eI.HotSpotGroup at installation. The number of HotSpots in the same group is not limited.
Some methods work with groups as e.g. HotSpot.DeInstallGroup(). This permits to
reference groups of HotSpots what is especially useful when using controls or popup’s.

The method HotSpot.GetNextGroupNumber() requests the next free group number and
places it into the register eI.HotSpotGroup. At removing of the popup the HotSpot group can
be removed by addressing the group.

How the HotSpots work

There is the above mentioned HotSpotTable in the eVM. The tables store information about
every HotSpot that is installed on the view. In a new view the HotSpotTable is empty. HotSpots
are installed with the method HotSpot.Install(Enter,Leave,Down,Up). The parameters

http://www.eigergraphics.com/

46 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

are names of event handlers defined as subroutines. Before installing the HotSpot the geometry of
the HotSpot is placed into the geometry registers eI.Pos_X1, eI.Pos_Y1, eI.Width and
eI.Height. With the method

Load.Geometry_XYWH(0,0,as_DisplayWidth,as_DisplayHeight) ; Example
The geometry can be defined.

One element of the HotSpot table has the following form:

HS_LEFT UINT16 pixels
HS_RIGHT UINT16 pixels
HS_TOP UINT16 pixels
HS_BOTTOM UINT16 pixels
HS_ENTER_EA INT24 address of event handler ENTER
HS_LEAVE_EA INT24 address of event handler LEAVE
HS_DOWN_EA INT24 address of event handler DOWN
HS_UP_EA INT24 address of event handler UP
HS.OFFSET_X UINT16 pixels
HS.OFFSET_Y UINT16 pixels
HS_GROUP UINT8 group number
HS_STATE UINT8 boolean
HS_TAG INT16 tag
HS_ID UINT16 hotspot ID

The geometry at the time of installation is converted in absolute screen coordinates and stored
in the structure. The addresses for the event handlers are stored in the structure. If there is no
event handler, NIL is stored. At the time of installation offset is also stored to maintain the
information of the relative position of the HotSpot. The group number is copied from the register
eI.HotSpotGroup. The tag can be given by the user and is copied from the register
eI.HS_Tag. The HotSpot ID is a unique ID given by the eVM at the time of installation.

Functional description of the eiger HotSpots from left to right:

Figure 1: HotSpot table with its eVM registers and methods.

1. The registers have to be set before the HotSpot is installed.
2. The method HotSpot.Install is executed and the HotSpot is stored as element in

the HotSpot table. Further HotSpots can be installed.

eVM registers method HotSpot.Install HotSpotTable touch event eVM registers
element

eI.Pos_X1 HS_LEFT eI.HS_Pos_X
eI.Pos_Y1 HS_RIGHT eI.HS_Pos_Y
eI.Widht HS_TOP eI.HS_Width
eI.Height HS_BOTTOM eI.HS_Height

HS_ENTER_EA
HS_LEAVE_EA eI.HS_EventType
HS_DOWN_EA
HS_UP_EA

eI.Offset_X HS.OFFSET_X eI.HS_Offset_X
eI.Offset_Y HS.OFFSET_Y eI.HS_Offset_Y
eI.HotSpotGroup HS_GROUP eI.HS_Group

HS_STATE eI.HS_State
eI.HotSpotTag HS_TAG eI.HS_Tag

HS_ID eI.HS_IDtransfer

transfer
transfer
transfer
transfer

evaluate next ID

calculate Pos_X
calculate Pos_Y
calculate Widht
calculate Height

execute handler if enter
execute handler if leave
execute handler if down

execute handler if up
transfer

calculate left

calculate top
calculate bottom

transfer

calculate address enter
calculate address leave
calculate address down

calculate address up

transfer

transfer
write "enable"

calculate right

transfer

http://www.eigergraphics.com/

eigerScript methods 47

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

3. With the method HotSpot.TableEnable the HotSpot table is enabled for the
eigerOS to scan the touch panel for relevant events.

4. If a touch event for one given HotSpot is detected the eigerOS fills up the eI.HS_…
registers and executes the appropriate touch event handler.

The register eI.HS_EventType holds the last HotSpot event that occurred. So it is also

possible to write an event handler and decide in the handler what to do.

Possible constants in the Register eI.HS_EventType :

 CONST HS_EVENT_NONE = 0 ; no event
 CONST HS_EVENT_ENTER = 1 ; Enter event
 CONST HS_EVENT_LEAVE = 2 ; Leave event
 CONST HS_EVENT_DOWN = 3 ; Down event
 CONST HS_EVENT_UP = 4 ; Up event

HotSpot.Install(Enter,Leave,Down,Up) 0$50

With the method HotSpot.Install(Enter,Leave,Down,Up) a HotSpot is installed. As
mentioned above the registers eI.Pos_X1, eI.Pos_Y1, eI.Width and eI.Height have to be
preloaded with the size of the rectangle that defines a specific HotSpot.

Example:

 ; Event handler for animated button

STRING [32] HS1_Text.$ = 'Label Test'

SUB HS1_LE
 Fill.LabelParameter (Test_Style_UP)
 Load.Pos_X1Y1 (20, 70)
 Label.Text (HS1_Text.$)
ENDSUB

SUB HS1_DN
 Fill.LabelParameter (Test_Style_DN)
 Load.Pos_X1Y1 (20, 70)
 Label.Text (HS1_Text.$)
ENDSUB

SUB HS3_UP
 CallSubroutine (HS1_LE)
 ; enter the code for the action of the button here...

ENDSUB
..

SUB Test_Styles

Test_Style_UP:
 INLINEWORDS (no_change) ; corresponds to eI.Pos_X1
 INLINEWORDS (no_change) ; corresponds to eI.Pos_Y1
 INLINEWORDS (120) ; corresponds to eI.Width
 INLINEWORDS (40) ; corresponds to eI.Height
 INLINEWORDS (8) ; corresponds to eI.SpaceLeft
 INLINEWORDS (8) ; corresponds to eI.SpaceRight

http://www.eigergraphics.com/

48 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

 INLINEWORDS (0) ; corresponds to eI.HorizontalAdjust
 INLINEWORDS (0) ; corresponds to eI.VericalAdjust
 INLINEWORDS (cornflowerblue) ; corresponds to eI.FillColor
 INLINEWORDS (as_FillColor) ; corresponds to eI.BackColor
 INLINEWORDS (as_FillColor) ; corresponds to eI.LineColor
 INLINEWORDS (autocolor) ; corresponds to eI.TextColor
 INLINEWORDS (Pos_left) ; corresponds to eI.Position
 INLINEWORDS (Orientation_0deg) ; corresponds to eI.Orientation
 INLINEWORDS (normal) ; corresponds to eI.Appearance
 INLINEWORDS (as_Skin_BtnBorderUP) ; corresponds to eI.BorderStyle
 INLINEWORDS (Font_Arial_14n) ; corresponds to eI.FontNumber
 INLINEWORDS (as_Skin_FormBodyColor) ; corresponds to eI.BackgroundColor

Test_Style_DN:
 INLINEWORDS (no_change) ; corresponds to eI.Pos_X1
 INLINEWORDS (no_change) ; corresponds to eI.Pos_Y1
 INLINEWORDS (120) ; corresponds to eI.Width
 INLINEWORDS (40) ; corresponds to eI.Height
 INLINEWORDS (8) ; corresponds to eI.SpaceLeft
 INLINEWORDS (8) ; corresponds to eI.SpaceRight
 INLINEWORDS (1) ; corresponds to eI.HorizontalAdjust
 INLINEWORDS (1) ; corresponds to eI.VericalAdjust
 INLINEWORDS (seagreen) ; corresponds to eI.FillColor
 INLINEWORDS (as_FillColor) ; corresponds to eI.BackColor
 INLINEWORDS (as_FillColor) ; corresponds to eI.LineColor
 INLINEWORDS (autocolor) ; corresponds to eI.TextColor
 INLINEWORDS (Pos_left) ; corresponds to eI.Position
 INLINEWORDS (Orientation_0deg) ; corresponds to eI.Orientation
 INLINEWORDS (normal) ; corresponds to eI.Appearance
 INLINEWORDS (as_Skin_BtnBorderDN) ; corresponds to eI.BorderStyle
 INLINEWORDS (Font_Arial_14n) ; corresponds to eI.FontNumber
 INLINEWORDS (as_Skin_FormBodyColor) ; corresponds to eI.BackgroundColor

ENDSUB

..
 CallSubroutine (HS1_LE)
 HotSpot.Install (NIL, HS1_LE, HS1_DN, HS1_UP)

 HotSpot.TableEnable()

After calling the subroutine HS1_LE the registers are loaded with the position and the size of the
button. Then the HotSpot can be installed.

Tip1: if a button with otherwise same attributes should be installed, the button can be coloured
with the method Label.Color(hotpink).

Tip2: if a button without text has to be installed the method Label.Box() renders a such a
button.

Tip3: if an invisible HotSpot is desired the coordinates can be set with the method
Load.Geometry_XYWH(0,0,as_DisplayWidth,as_DisplayHeight). A HotSpot over the
whole display is installed.

Tip4: a HotSpot can be placed on an image. After loading the image with the method
File.ReadEGI('C:/MYPR/PICT/MYPICT01.EGI') the width and the height of the image are
returned in the registers eI.Width and eI.Height.

Tip5: if an event needs no event handler, NIL (Nothing In List) can be set as parameter.
HotSpot.Install(NIL,NIL,HS1_DN,NIL) if only the DownEvent needs a handler.

http://www.eigergraphics.com/

eigerScript methods 49

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Tip6: several HotSpots can use the same event handler. The action can be selected in the event
handler using the value of the register eI.HS_Tag. The value has to be set at installation of the
HotSpot.:

Example for assigning a HotSpot-Tag to a HotSpot:

 Load.Geometry_XYWH(Button_X,Button_Y,ButtonWidth,Button_H)
 eI.HotSpotTag := 1 ; you can also assign a CHAR like "A" or 0x41
 HotSpot.Install(NIL,Button01_Leave,Button01_Down,Button01_Up)

When this HotSpot is touched, it assigns the value of its eI.HotSpotTag to the Register
eI.HS_Tag (cf. Figure 1, p.46).

HotSpot.GetNextGroupNumber () 0$50

The method HotSpot.GetNextGroupNumber() gets the number of the next HotSpotgroup
in the range of 32 to 223. The return value is in the register eI.HotSpotGroup (see below,
“function of the operating system”). All HotSpots that have been installed since calling the method
are installed with this group number. The returned group number is counted internally and can not
be manipulated. If the group number has reached 223 the next value is 32 again. The group
numbers are useful to define groups of HotSpots that are used in a popup dialog. If the popup is
removed, its HotSpots have to be removed from the HotSpot table simultaneously. With this
feature it is possible to write code for controls in code modules that can be included to the
program code.

Function of the operating system:

eOS_HS_GroupNumberInternal := eOS_HS_GroupNumberInternal + 1
 IF eOS_HS_GroupNumberInternal > 223 THEN
 eOS_HS_GroupNumberInternal := 32
 ENDIF

eI.HotSpotGroup := eOS_HS_GroupNumberInternal

Example:
HotSpot.GetNextGroupNumber()
Debug.Print_IntegerHex('\r\neI.HotSpotGroup = ',eI.HotSpotGroup)
HotSpot.GetNextGroupNumber ()
Debug.Print_IntegerHex('\r\neI.HotSpotGroup = ',eI.HotSpotGroup)

HotSpot.GetCurrGroupNumber() 0$50

The method HotSpot.GetCurrGroupNumber() requests the current group number without
counting up the internal group number counter. The group number is returned in the register
eI.HotSpotGroup (see below, “function of the operating system”).

Function of the operating system:

eI.HotSpotGroup := eOS_HS_GroupNumberInternal

http://www.eigergraphics.com/

50 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Example:
HotSpot.GetCurrGroupNumber()
Debug.Print_IntegerHex('\r\neI.HotSpotGroup = ',eI.HotSpotGroup)
(The expression \r\n stands for Carriage Return and New Line)

HotSpot.DisableGroup(VarInt:Group) 0$80

The method HotSpot.DisableGroup(Group) disables a group of HotSpots. The HotSpots
stay stored in the HotSpotTable, but don’t generate events when touched. The method is used to
temporary disable HotSpots. The group number is passed as parameter.

Example:
HotSpot.DisableGroup(MyGroup.I)

HotSpot.EnableGroup (VarInt:Group) 0$80

The method HotSpot.EnableGroup(Group) enables a group of HotSpots. The group
number is passed as parameter.

Example:
HotSpot.EnableGroup(MyGroup.I)

HotSpot.Disable_By_ID(VarInt:HotSpot_ID) 0$80

The method HotSpot.Disable_By_ID(HotSpot_ID) disables a HotSpot that is referenced
by its unique ID. The HotSpot stays stored in the HotSpotTable, but doesn’t generate events. The
method is used to temporary disable HotSpots. The HotSpot_ID is passed as parameter to the
method.

Example:
HotSpot.Enable_By_ID(MyID.I)

HotSpot.Enable_By_ID(VarInt:HotSpot_ID) 0$80

The method HotSpot.EnableGroup (HotSpot_ID) enables a HotSpot that is referenced by its
unique ID. The HotSpot that is stored in the HotSpotTable in disabled state is enabled and can
generate events. The HotSpot_ID is passed as parameter to the method.

Example:
HotSpot.Enable_By_ID (MyID.I)

http://www.eigergraphics.com/

eigerScript methods 51

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

HotSpot.DeInstallGroup() 0$50

The method HotSpot.DeInstallGroup () deinstalls a group of HotSpots. The method is
used to clean up a popup dialog. The group number is passed in register eI.HotSpotGroup to
the method. Since the end of a popup dialog is activated by a navigation button the register
eI.HS_Group returns the group number used to remove the controls HotSpots.

Example:
eI.HotSpotGroup := MyGroup.I
HotSpot.DeInstallGroup ()

HotSpot.TableEnable()

The method HotSpot.TableEnable() enables the HotSpotTable for the scanning of touch
events that trigger an event handler. The execution of this method is essential after the installation
of the HotSpots in a view.

HotSpot.TableDestroy()

The method HotSpot.TableDestroy() destroys the HotSpotTable and the scanning for
events is stopped. After execution of this method, new HotSpots have to be installed with the
method HotSpot.Install(Enter,Leave,Down,Up) and the scanning of the table has to be
restarted with the method HotSpot.TableEnable().

HotSpot.DisableRegion() 0$80

The method HotSpot.DisableRegion() disables all HotSpots that are within a rectangular
region specified or touch that region. The geometry for the rectangle can be defined with the
method Load.Geometry_XYWH(X,Y,W,H).

Example:
Load.Geometry_XYWH(100,100,400,300)
HotSpot.DisableRegion()

HotSpot.EnableRegion() 0$80

The method HotSpot.EnableRegion() enables all HotSpots that are within a rectangular
region specified or touch that region. The geometry for the rectangle can be defined with the
method Load.Geometry_XYWH(X,Y,W,H).

Example:
Load.Geometry_XYWH(100,100,400,300)
HotSpot.EnableRegion()

http://www.eigergraphics.com/

52 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

HotSpot.GetInfo_By_ID(VarInt:ID) 0$80

The method HotSpot.GetInfo_By_ID(ID) starts the transfer of the information that are
stored in the HotSpotTable to the eI.HS_… registers.

Example:
SUB HS_Test_Enter
 HotSpot.GetInfo_By_ID(eI.HS_ID)
 Debug.Print_IntegerHex('\r\neI.HS_Pos_X ',eI.HS_Pos_X)
 Debug.Print_IntegerHex('\r\neI.HS_Pos_Y ',eI.HS_Pos_Y)
 Debug.Print_IntegerHex('\r\neI.HS_Width ',eI.HS_Width)
 Debug.Print_IntegerHex('\r\neI.HS_Height ',eI.HS_Height)
 Debug.Print_IntegerHex('\r\neI.HS_Offset_X ',eI.HS_Offset_X)
 Debug.Print_IntegerHex('\r\neI.HS_Offset_Y ',eI.HS_Offset_Y)
 Debug.Print_IntegerHex('\r\neI.HS_Group ',eI.HS_Group)
 Debug.Print_IntegerHex('\r\neI.HS_Tag ',eI.HS_Tag)
 Debug.Print_IntegerHex('\r\neI.HS_ID ',eI.HS_ID)
 Debug.Print_IntegerHex('\r\neI.HS_State ',eI.HS_State)
 Debug.Print_CRLF()
ENDSUB

The routine of the example code above prints out all HotSpot information over the COM1

debug interface.

Class HotKey

Some appliances don’t use a touch panel but function keys on the side of the display. The
class HotKey has methods that can be used to integrate the function keys to the view. HotKeys
can generate an event when pressed and when released. For keys that should be scanned, a
event handler must be present. The HotKeys can be used in conjunction with a touch panel e.g.
as function keys for important functions.

The number of function keys depend on the FOX hardware. There exist models with eight or
sixteen keyboard inputs. The hardware manual of the computer used has to be consulted. All of
the models have in common that the first key is translated to ASCII ‘A’ when the key is pressed
and to ASCII ‘a’ when the key is released.

To use the HotKeys in a view, the event handler has to be installed for the view. The method
HotKey.InputFlush() clears the input buffer. HotKeys are installed with the method
HotKey.InstallLocalKey(Key,EventHandler,Tag). Then, the table must be enabled with
the method HotKey.TableEnable() to receive the events. The HotKeys can be rearranged
and reconfigured during the runtime of the view.

The HotKeys can be installed locally for a specific view and globally for all views of a project.
For global keys there must be a global event handler in the *.EPR file.

HotKey.InstallLocalKey(VarInt:Key,labelRelative24:Event,
VarInt:Tag)

The method HotKey.InstallLocalKey(Key,EventHandler,Tag) installs a local
HotKey. The method uses an ASCII-Character to identify the HotKey to be installed and the name
of the event handler. The tag is an integer value, that is returned in the eI.HK_Tag register,

http://www.eigergraphics.com/

eigerScript methods 53

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

when the event occurs. The value can be used to convert the HotKey codes to specific key codes
or action codes.

Tip: It is possible to use the same event handler for the HotKey event and for a touch event,
e.g. If the key should take the same action as a soft button on the display.

HotKey.DeInstallKey(VarInt:Key)

The method HotKey.DeInstallKey(Key) deinstalls a single HotKey. The method uses an
ASCII character to identify the key that has to be deinstalled. The method works for local and for
global HotKeys.

HotKey.DeInstallLocalKeys()

The method HotKey.DeInstallLocalKeys() deinstalls all local HotKeys. This method is
executed automatically when a view change occurs because the local event handlers of previous
view are not valid in the new view.

HotKey.DisableLocalKeys()

The method HotKey.DisableLocalKeys() disables all local HotKeys in the HotKeyTable
while the global HotKeys remain active.

HotKey.EnableLocalKeys()

The method HotKey.EnableLocalKeys() enables all local HotKeys of the HotKeyTable.

HotKey.InputFlush()

The method HotKey.InputFlush() clears the input buffer the method can be used to
ensure that no keys are in the input buffer that would generate events after enabling the scanning
of the HotKeys.

HotKey.TableEnable()

The method HotKey.TableEnable() enables the scanning for the HotKeyTable. In the
enabled status of the HotKeyTable the keys can generate events that are handled by the event
handlers.

http://www.eigergraphics.com/

54 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

HotKey.TableDisable()

The method HotKey.TableDisable() disables the HotKeyTable. No HotKey events are
generated afterwards. The HotKeys installed remain in the table and the method
HotKey.TableEnable() enables the scanning. The method HotKey.InputFlush() can be
used to disregard user inputs when the scanning was interrupted for prolonged time.

HotKey.TableInit()

The method HotKey.TableInit() removes all HotKey table entries. The local and the
global events are removed from the table and the scanning of the table is stopped.

Application example:

Keys that are connected to the FOX computer should be handled. The inputs D,E,F should
generate the events HK_Red (handled by the Subroutine “HK_Red”), HK_Green and HK_Blue.
Old keys are cleared and the HotKeys are installed locally. In this example the tag is not used and
zero is passed as parameter.

 HotKey.InputFlush() ; clear old HotKeys
 HotKey.InstallLocalKey("D",HK_Red_Dn,0) ; if pressed go to SUB HK_Red
 HotKey.InstallLocalKey("d",HK_Red_Up,0) ; if released got to SUB HK_Red_Up
 HotKey.InstallLocalKey("E",HK_Green_Dn,0)
 HotKey.InstallLocalKey("F",HK_Blue,0)

 HotKey.EnableLocalKeys()
 HotKey.TableEnable()

Class Time

The FOX embedded computer is equipped with a real time clock. Methods of the class Time
are used to get the current date and time from the real time clock or to reset the real time clock
respectively.

In the context of time and date there are also two useful methods of the class String available
(cf. p. 22):

 Str.Time(VarStrTargetString,VarInt:FormatTime)
 Str.Date(VarStrTargetString,VarInt:FormatDate)

http://www.eigergraphics.com/

eigerScript methods 55

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Time.Get()

The method Time.Get() is used to assign the current time, day of week, month and year
to the corresponding registers (see below). Time.Get()is a prerequisite for the use of the time
registers.

 eI.YEAR : Calendar year, e.g. 2010, 2011 etc.
 eI.MONTH : Month of year, 1 .. 12
 eI.DOW : Day of week, e.g. 1 for Mondays .. 7 for Sundays
 eI.DATE : Day of month, 1 .. 31
 eI.HOURS : Hour of day, 0 .. 23
 eI.MIN : Minute of hour, 0 .. 59
 eI.SEC : Second of minute, 0 .. 59
 eI.MSEC : Millisecond of second, 0 .. 999

Example:
STRING [9] Weekday.$ = '' ; String declaration for Weekday
STRING [30] Date.$ = '' ; String declaration for Date

SUB DayOfWeek
 Time.Get() ; gets Time and Date from the Real Time Clock
 IF eI.DOW == 1 THEN
 Weekday.$:= 'Monday'
 ELSIF eI.DOW == 2 THEN
 Weekday.$:= 'Tuesday'
 ELSIF eI.DOW == 3 THEN
 Weekday.$:= 'Wednesday'
 ELSIF eI.DOW == 4 THEN
 Weekday.$:= 'Thursday'
 ELSIF eI.DOW == 5 THEN
 Weekday.$:= 'Friday'
 ELSIF eI.DOW == 6 THEN
 Weekday.$:= 'Saturday'
 ELSIF eI.DOW == 7 THEN
 Weekday.$:= 'Sunday'
 ENDIF

 Date.$:= Weekday.$; Thursday
 Str.Concat(Date.$, ', ') ; Thursday,
 Str.Cvt_Integer(Date.$, eI.YEAR, 4) ; Thursday, 2010
 Str.Concat(Date.$, '-') ; Thursday, 2010-
 eI.FillChar := "0" ; Zero ahead of Numbers below 10, e.g. 09 instead of 9
 Str.Cvt_Integer(Date.$, eI.MONTH, 2) ; Thursday, 2010-12
 Str.Concat(Date.$, '-') ; Thursday, 2010-12-
 Str.Cvt_Integer(Date.$, eI.DATE, 2) ; Thursday, 2010-12-09
ENDSUB

Time.Set()

The method Time.Set() resets the real time clock according to the parameters you
previously assigned to the date and time registers eI.DATE, eI.MONTH and eI.YEAR,
eI.HOURS, eI.MIN , eI.SEC and eI.MSEC.

Example:
 SUB Set_Date_and_Time

http://www.eigergraphics.com/

56 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

 eI.DATE := 10 ; 10th of
 eI.MONTH := 12 ; Dezember
 eI.YEAR := 2010 ; of this year
 eI.HOURS := 14 ; 2 pm
 eI.MIN := 15 ; and a quarter
 eI.SEC := 30 ; plus thirty seconds
 eI.MSEC := 0 ; plus zero milliseconds
 Time.Set()
 ENDSUB

Time.SetDate()

The method Time.SetDate() resets the real time clock according to the parameters you
previously assigned to the date registers eI.DATE , eI.MONTH and eI.YEAR .

Example:
 SUB Set_Date
 eI.DATE := 10 ; 10th of
 eI.MONTH := 12 ; Dezember
 eI.YEAR := 2010 ; of this year
 Time.SetDate()
 ENDSUB

Time.SetTime()

The method Time.SetTime() resets the real time clock according to the parameters you’ve
previously assigned to the date and time registers eI.HOURS, eI.MIN , eI.SEC and eI.MSEC.

Example:
 SUB Set_Date
 eI.HOURS := 14 ; 2 pm
 eI.MIN := 15 ; and a quarter
 eI.SEC := 30 ; plus thirty seconds
 eI.MSEC := 0 ; plus zero milliseconds
 Time.SetTime()
 ENDSUB

Time.DayOfWeek()

The method Time.DayOfWeek() is used to get the day of the week of a certain date (cf.
Example). In advance day, month and year must have been assigned to the registers eI.DATE,
eI.MONTH and eI.YEAR.

Example (what day of the week was February 19th 2010 ?) :

http://www.eigergraphics.com/

eigerScript methods 57

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

 eI.DATE := 19 ; day of Month
 eI.MONTH := 2 ; February
 eI.YEAR := 2010 ; Year
 Time.DayOfWeek()

 IF eI.DOW == 1 THEN
 Weekday.$:= 'Monday'
 ELSIF eI.DOW == 2 THEN
 Weekday.$:= 'Tuesday'
 ELSIF eI.DOW == 3 THEN
 Weekday.$:= 'Wednesday'
 ELSIF eI.DOW == 4 THEN
 Weekday.$:= 'Thursday'
 ELSIF eI.DOW == 5 THEN
 Weekday.$:= 'Friday'
 ELSIF eI.DOW == 6 THEN
 Weekday.$:= 'Saturday'
 ELSIF eI.DOW == 7 THEN
 Weekday.$:= 'Sunday'
 ENDIF
 Label.Text(Date.$) ; Result: 2010-02-19 was Friday

Class Timer

In an event driven system, timers are one of the most important generators for events. It is
possible to generate events periodically or to time out a time. Timers can have handlers that are
local or global to the view. Local timers are killed at view change while global timers remain active.
Global timers should not draw on the display.

The eVM provides eight Timers, Timer 0 to 7.

The eVM-timers have a TicSection and an EventSection that work more or less independently
of each other.

The TicSection is responsible for the real-time issues of the timer and sets an internal flag
when the timer expires and increments the TimerExpiredCounter.

The TicSection to which the event manager task on the eVM belongs, checks periodically if a
timer has expired and generates an event if so.

The timer can be used for periodical updates on the display or to supervise user actions with a
time out.

http://www.eigergraphics.com/

58 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Structure of timer:

The diagram above shows the structure of a single timer channel. The timer has a base clock
of 1000Hz thus all counts are a multiple of 1ms. With Timer.Load(Timer,Time) the reload
register is set to the desired value. The timer is deployed with Timer.StartSingle(Timer)
that sets a one shot functionality or with Timer.StartContinuous(Timer) that reloads the
timer after expiring. Internally the ALD (auto load) flag is set or cleared. It determines whether the
timer is stopped or free running. The TimerCounterTime register can be accessed with the method
Timer.StartContinuous(Timer,Value). The timer structure is based on UINT16 registers.
So the longest period is about 1 min. When expiring the timer can be programmed to trigger an
event with a user event handler. The timer can be stopped and released any time.

Example of a timer routine:
SUB Timer_Read_Buffer
 Timer.InstallLocal(0,Read_Buffer) ; timer 0, call subroutine Read_Buffer
 Timer.Load(0,300) ; after 300 ms
 Timer.StartContinuous(0) ; continuous timer, repeat without end
ENDSUB
In addition to the example above, the timer function needs to be enabled with Timer.TableEnable(), e.g. in the
Mainprogramm (cf. p. 59) .

Timer.Init()

The method Timer.Init() initializes all timers and all timers previously active are stopped.
After execution of this method the timers have to be reinstalled.

Attention:
This method works on the whole timer section. If global timers are installed, these timers are also
initialized.

http://www.eigergraphics.com/

eigerScript methods 59

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Timer: EventSection

The EventSection is responsible that a timer event can be executed.

Timer.InstallLocal(VarInt:Timer,labelRel24:Event)

The method Timer.InstallLocal(Timer,Event) is used to install a local event handler.
There are eight timers available, timer 0 to timer 7.

Example:
 Timer.InstallLocal(0,Read_Buffer) ; timer 0, call subroutine Read_Buffer

Timer.InstallGlobal(VarInt:Timer,labelAbsolute24:Event)

The method Timer.InstallGlobal(Timer,Event) is used to install a global event
handler for a timer. We recommend the event handler to be programmed as short as possible and
not to write on the display, since all drawing routines consume a lot of CPU power. It is absolutely
necessary that the event handler for a global timer is placed into the *.EPR- file in order to work in
all views of a project.

Timer.TableDisable()

The method Timer.TableDisable() disables the timer table for generating local events.
The table entries are still present and with the method Timer.TableEnable() the table can be
enabled again. The method is used to temporarily disable timer events. At a view change this
method is executed automatically.

Timer.TableEnable()

The method Timer.TableEnable() enables the timer table. After the execution of this
method timer events can be handled.

Timer.DeInstall(VarInt:Timer)

The method Timer.DeInstall(VarInt:Timer) deinstalls a timer. If a timer has expired
just before DeInstall, the event is still executed. If the event must not occur, the method
Timer.Kill(VarInt:Timer) must be used instead.

http://www.eigergraphics.com/

60 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Timer.Kill(VarInt:Timer)

The method Timer.Kill(VarInt:Timer) deinstalls a timer. If a timer has just expired the
event will not be executed any more. It is strongly recommended to use this method for auto
repeat keys or other timers that draw on the display. An other solution to prevent timers to draw,
when not needed is to control the timer with a flag.

Timer: TicSection

The TicSection of the timer is executed every millisecond. Every timer is checked for its state
RUN or STOP. If a timer is in RUN-Mode, the TimerCounter is decremented every ms. When
reaching zero the timer is reload from an internal reload register and the expired is incremented
and the EXP-Flag is set. Then the AUTORELOAD-Mode defines whether the timer remains in run
mode (continuous) or goes to STOP (single).

Timer.Load(VarInt:Timer,VarInt:Time[ms])

The method Timer.Load(Timer,Time) loads the timer. The time is indicated in ms. The
parameter is written to the internal RELOAD-register of the given timer. When the timer expires
the next time of with the method Timer.StartSingle() or Timer.StartContinuous() the
value is loaded into the internal TimerCounter register.

Timer.StartSingle(VarInt:Timer)

The method Timer.StartSingle() loads the TimerCounter from the Reload-register. The
expiredCounter is reset and the timer enabled for one cycle. After reaching zero the timer
increments the TimerExpired register and generates an event if the events are enabled.

Timer.StartContinuous(VarInt:Timer)

The method Timer.StartContinuous() loads the TimerCounter from the Reload-register.
The expiredCounter is reset and the timer enabled for freely running cycles. After reaching zero
the timer increments the TimerExpired and generates an event if the events are enabled.

Timer.Stop(VarInt:Timer)

The method Timer.Stop() stops a timer. It can be relaunched with the method
Timer.Continue().

http://www.eigergraphics.com/

eigerScript methods 61

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Timer.Continue(VarInt:Timer)

The method Timer.Continue() relaunches a stopped timer after executing the method
Timer.Stop().

Timer.Reload(VarInt:Timer)

The method Timer.Reload() reloads the CounterTimer from the Reload-register of the given
timer. If the timer is running, the method resets the time to the start. The method can be used to
generate a timeout event.

Timer.Get_TimerCounter(VarInt:Timer,VarInt:TimerCounter)

The method Timer.Get_TimerCounter() gets the TimerCounter of the given timer as
return value. The method can be used to check how much time is left until the timer expires or
when the initial timer value is known, the difference is the duration from start to end.

Timer.Get_ExpiredCounter(VarInt:Timer,VarInt:ExpCounter)

The method Timer.Get_ExpiredCounter() gets the ExpiredCounter of a given timer. This
counter is incremented each time the timer is expired. The method can be used to check if
TimerEvents were get lost.

Timer.Load_ExpiredCounter(VarInt:Timer,VarInt:Value)

The method Timer.Load_ExpiredCounter() loads the ExpiredCounter of a given timer
with a value that is passed as parameter.

Timer.SUB_ExpiredCounter(VarInt:Timer,VarInt:Value)

The method Timer.SUB_ExpiredCounter() subtracts the parameter value from the
ExpiredCounter. If precise counts of the expired timers are used this method will perform a
secured access to the ExpiredCounter.

Example:

 Timer.Get_ExpiredCounter(MyTimer.I, MyExpiredCounter.I)
 Math.CVT_Long_from_Integer(MyExpiredCounter.L,MyExpiredCounter.I)
 TotalCounter.L := TotalCounter.L + MyExpiredCounter.L
 Timer.SUB_ExpiredCounter(MyTimer.I, MyExpiredCounter.I)

http://www.eigergraphics.com/

62 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

The Totalcounter is incremented by the ExpiredCounter. If in the mean time between

Timer.Get_ExpiredCounter and Timer.SUB_ExpiredCounter the timer should have expired, the
correct numbers of expiries is subtracted and the difference is considered next time.

http://www.eigergraphics.com/

eigerScript methods 63

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Serial asynchronous Interfaces RS232/RS485

The eigerPanels have serial communication lines to connect peripheral devices or to connect a
PLC or a customer application to the eigerPanel. With the RS232 interface a point to point
communication can be established, while the RS485 interface can form a bus with several bus
nodes connected. The controlling of the RS485 bus transceiver is performed automatically by the
firmware.

Depending on the system configuration, the connected device is either a master or a slave. On
the eigerPanel therefore a slave or a master must be implemented. The master starts the
communication and the slave has to respond to requests.

The characters sent by the RS232 asynchronous communication line are always 8 bit
characters. The whole range from 0 to 255 is open to the communication. However the serial
methods use always integer characters as parameters from and to the routines.

The characters can also be transmitted over RS485. The bus is intended to have several
nodes communication with a master node. Please refer to the appropriate documents and
literature for further details on RS232 and RS485. Especially the length limitations for both types
of communication, the use of the correct cables, the type and configuration of connectors, the
shielding, the bus termination and so on.

Communication modes RS232

The master starts all communication and the slave sends a reply.

RS232 slave RS232 slave peripheral

RxD TxD RxD
GND GND GND
TxD RxD TxD

eg. printer

RS232 3-wire communication with RxD, TxD and ground eigerPanel as master

eg. PLC
eg. customer control board
eg. RFID scanner or barcode reader

eigerPanel

RS232 master RS232 slave

TxD RxD
GND GND
RxD TxD

RS232 3-wire communication with RxD, TxD and ground eigerPanel as slave

eg. PLC
eg. customer control board

eigerPanel

http://www.eigergraphics.com/

64 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Communication modes RS485

Class Serial

Initialize serial interface parameters

Serial.SetBaudrate(VarInt:COMx,VarInt:Baudrate) 0$40

The method Serial.SetBaudrate(VarInt:COMx,VarInt:Baudrate) configures the
baud rate that is the communication speed in bits/sec of an appropriate communication line. The
Rx and the Tx channel always operate at the same speed.

The other parameters are:

• 8bits,

• no parity,

• one stopbit.

The selectable baud rates are: 1'200, 2'400, 4'800, 9'600, 19'200, 38'400, 57'600, 115'200,
250'000. The preferred values for RS232 are underlined or highlighted in the table. For RS232
Baud_250000 is not recommended.

 Baudrate Constant
 1'200 Baud_1200
 2'400 Baud_2400
 4'800 Baud_4800
 9'600 Baud_9600
 19'200 Baud_19200
 38'400 Baud_38400 (Default RS232)
 57'600 Baud_57600
 115'200 Baud_115200
RS485 250'000 Baud_250000 (Default RS485)

Address A1 Address A2 Address An

RxTx+
GND
RxTx-

RS485-bus communication with RxTx+, RxTx- and ground

bus master bus node #1 bus node #2 bus node #n

http://www.eigergraphics.com/

eigerScript methods 65

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Example:
 Serial.SetBaudrate(COM2,Baud_38400)

Receive characters

Serial.Rx_Char(VarInt:COMx,VarInt:Char) 0$40

The method Serial.Rx_Char(VarInt:COMx,VarInt:Char) reads one character from the
serial interface and removes it from there to the integer variable specified. The return value is an
UINT16 valid characters range from 0..255. If no character is present at the serial interface,
the method returns -1. The method doesn’t wait until a character is present in order to prevent
deadlocks in the system. If there are several characters in the buffer of the serial interface, the
method takes the first character of the queue.

Example:
 Serial.Rx_Char(COM2, MyCharacter.I)

Send characters

Serial.Tx_Char(VarInt:COMx,VarInt:Char) 0$40

The method Serial.Tx_Char(VarInt:COMx,VarInt:Char) transmits one character over
the serial interface.

Serial.Tx_Char(COM2,"A") ; Char A is transmitted over COM2

Serial.Tx_String(VarInt:COMx,VarStr) 0$40

The method Serial.Tx_String(Kanal,String) transmits a string over the serial
interface. The terminating zero of the string is not transmitted. If it is necessary to transmit a zero,
it can be performed by using the method Serial.Tx_NUL(VarInt:COMx).

Serial.Tx_String(COM2,'Hello') ; Output Hello on COM2

Remark: If large strings are transmitted and the baud rate is not high, the method has to wait
until the last character has space in the output buffer. In this case the system is blocked until the
method returns.

Serial.Tx_CRLF(VarInt:COMx)

The method Serial.Tx_CRLF(VarInt:COMx) sends a CR and a LF character over the
indicated serial interface.

Serial.Tx_CRLF(COM2) ; Output CRLF on COM2

http://www.eigergraphics.com/

66 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Serial.Tx_NUL(VarInt:COMx)

The method Serial.Tx_NUL(VarInt:COMx) sends a Null-Character 0x00 over the serial
interface. The method can be used to prevent a timeout on the receiver, when otherwise no
communication is necessary.

Serial.Tx_NUL(COM2) ; Output NUL on COM2

Remark: the terminating zero of a string is not transmitted. This method could be used to perform
this.

Send binary data (YMODEM)

Serial.SendFromFile(VarInt:COMx,VarStr:Filename)

The method Serial.SendFromFile(VarInt:COMx,VarStr:Filename) outputs any file
directly from the CompactFlash Card to a serial interface.

COMx: either COM0 (serial interface RS485) or COM2 (serial interface RS232).

Filename: Filename (full path name).

Example:
Serial.SendFromFile(COM2,'C:/MYAP/PICT/MyPict.egi').

The underlying protocol is the YMODEM with CRC checksum. So the file can be received by a
PC using the communication program ‚HyperTerminal’.

HyperTerminal settings:
1. Click Start > Programs > Accessories > Communications1, and click

HyperTerminal. The Box "Connection Description" appears.

2. Specify the name for your new connection, e.g. “eigerPanel Transfer”.

3. Select an icon by clicking one, e.g. 'open book with phone', and click OK. The box
"Phone Number" appears.

4. Select and click in the options box "Connect using" the option COM 1 or COM 2. Click
OK. The box "COM 1 or COM 2 Properties" appears.

5. Define the following port settings:
Bits per second: 9600 (according to the baudrate you chose for the eigerPanel)
Data bits: 8
Parity: none
Stop bits: 1
Flow control: non
Click OK. "HyperTerminal" is activated.

1 In German: Start > alle Programme > Zubehör > Kommunikation

http://www.eigergraphics.com/

eigerScript methods 67

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

6. Close “eigerPanel Transfer – HyperTerminal”. A question appears.

7. By closing the Hyperterminal window answer the dialog with YES. Answering the
following question, if the session should be stored, also with YES and you can use the
same terminal properties when you connect the next time to your eigerPanel. To open
the next session you can simply select your icon with the text “eigerPanel Transfer”
after clicking Start > Programs > Accessories > Communications > HyperTerminal
(Folder).

File transfer from the eigerPanel to your PC (HyperTerminal)
1. Connect your PC and the eigerPanel using a serial cable (e.g. the cable F4339, which

is part of the eigerPanel StarterKit).

2. Open the HyperTerminal (Start > Programs > Accessories > Communications >
HyperTerminal (Folder) > eigerPanel Transfer).

3. Set the eigerPanel to receive the file, according to your application on the eigerPanel,
e.g. by pushing a button, which includes the method
Serial.SendFromFile(COM2,'C:/MYAP/PICT/MyPict.egi'). Please note that
the file name is of the 8.3-type. Example: “YourName.txt”.

4. Then in your PC’s HyperTerminal go to "Transfer" menu and "Receive". The dialog
“Receive File” appears.

5. In the "Receive file" dialog, set the protocol to YModem and navigate to the folder
where you want to store the file to be received. Tap "OK" to receive the file.

Serial.ReceiveToFile(VarInt:COMx,VarStr:TargetFolder)

The method Serial.ReceiveToFile(VarInt:COMx,VarStr:TargetFolder) is used
for receiving any file transmitted by the YMODEM protocol. The transmitted file is saved in the
target folder of the CompactFlash Card.

COMx: either COM0 (serial interface RS485) or COM2 (serial interface RS232).

Target Folder: Absolute path of the folder on the Compact Flash Card where you want to

save the file transmitted to the eigerPanel by a communication program like
HyperTerminal. Example: ’C:/TG12/PICT/’. Ensure that you enclose the
path in apostrophes and that the path is terminated by a slash ‚/’. After the
file has been received by the eigerPanel the string file contents the
complete path including the file name transmitted. Therefore the String
should not be replaced with a constant string.

 Attention: The folder structure which is indicate as argument of the
method Serial.ReceiveToFile() must already exist on the
CompactFlash Card before you transmit any file to the eigerPanel.

 If the file is transmitted from eigerPanel to eigerPanel using the method
Serial.SendFromFile(..) , the directory structure of the two Compact
Flash Cards need to be identical, concerning source and target folder. In
this case the argument ‚’target folder’ can be an empty string (’’).

http://www.eigergraphics.com/

68 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Example:
Serial.ReceiveToFile(COM2, FileName.$) ; FileName.$ consists of file

name and full path

File transfer from PC (HyperTerminal) to the eigerPanel
6. Connect your PC and the eigerPanel using a serial cable (e.g. the cable F4339, which

is part of the eigerPanel StarterKit).

7. Open the HyperTerminal (Start > Programs > Accessories > Communications >
HyperTerminal (Folder) > eigerPanel Transfer).

8. Then go to "Transfer" menu and "Send". The dialog “Send File” appears.

9. In the "Send file" dialog, set the protocol to YModem and navigate to the file to be sent
(Please note that the file name is of the 8.3-type. Example: “YourName.txt”). Tap "OK"
to send the file.

10. Now set the eigerPanel to receive the file. according to your application on the
eigerPanel, e.g. by pushing a button, which includes the method
Serial.ReceiveToFile(COM2, FileName.$).

Possible sources of error :

• Baud rate: Ensure that Sender and Receiver work with the same baud rate. In eigerScript
the baud rate is set by the method Serial.SetBaudrate(..). Further settings for the
HyperTerminal: 8 data bits, 1 stop bit, no parity, no flow control.

• Filename: The file name has to be of the 8.3-type. Example: YourName.txt.

• Directory structure: Ensure that the target folder and its absolute path you have prompted
in the method Serial.ReceiveToFile(VarInt:COMx,VarStr:target folder)
exists on the CompactFlash Card.

• Connecting cable: The connecting cable should be a null modem cable.

http://www.eigergraphics.com/

eigerScript methods 69

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Serial Two Wire Interface I2C

Class I2C

The class I2C contains methods to communicate with the I2C-bus. The eigerPanel is always
the (only) master and can’t be a slave. The addressing is 7-bit and clock stretching is not
supported.

The slave address 0x68 is reserved for the internal real time clock.

The slave address 0x5C is reserved for the capacitive touch.

Application example

Example for a I2C-communication with an analog-to-digital converter.

 CONST ADS1112_ADDRESS = 0x48

 INTEGER byte1.I
 INTEGER byte2.I

 ; read value from analog-to-digital converter
 I2C.Start()
 I2C.WriteConfigByte(ADS1112_ADDRESS, I2C_DATADIRECTION_READ)
 I2C.ReadStreamByte(byte1.I)
 I2C.ReadEndByte(byte2.I)
 I2C.Stop()

I2C.Init()

Initialise the ports for communication with the I2C-bus (the firmware does this automatically at
start-up of the system).

I2C.SetMode(VarInt:I2C_MODE_*)

Set the data rate of the I2C-bus. Up to now only the standard mode with 100kHz is available
and this mode is set as default.

Example:

 I2C.SetMode(I2C_MODE_STANDARD)

http://www.eigergraphics.com/

70 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

I2C.Start()

Generate a START condition on the I2C-bus. It is used to begin a transaction.

I2C.RepeatedStart()

Generate a repeated START condition on the I2C-bus. The method is functionally identical to
I2C.Start().

I2C.WriteConfigByte(VarInt:SlaveAddress,VarInt:
I2C_DATADIRECTION_*)

Send the slave address and the data direction bit on the I2C-bus.

For the parameter I2C_DATADIRECTION_*, the constants I2C_DATADIRECTION_READ and
I2C_DATADIRECTION_WRITE are possible.

Example:
 I2C.WriteConfigByte(0x48,I2C_DATADIRECTION_WRITE)

I2C.WriteByte(VarInt:Value)

Send a data byte on the I2C-bus.

Example:
 I2C.WriteByte(0xAA)

I2C.ReadStreamByte(VarInt:Value)

Read a data byte on the I2C-bus and generate an acknowledgment (ACK). It is used to read
more bytes after executing this method.

Example:
 I2C.ReadStreamByte(value.I)

I2C.ReadLastByte(VarInt:Value)

Read a data byte on the I2C-bus and generate a not-acknowledgment (NACK). This method
can be used to read the last or the only byte from a slave.

Example:
 I2C.ReadLastByte(value.I)

http://www.eigergraphics.com/

eigerScript methods 71

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

I2C.Stop()

Generate a STOP condition on the I2C-bus. It is used to terminate a transaction.

Class Colors_15

The Class Colors_15 is used to manipulate colours on the eigerPanel. The eigerPanel works
with 16bit colour variables. The internal representation of the COLOR15 data type is:

The selected data type is a good compromise between colour representation and the bit 15,
which is used to encode the transparency or commands in the EGI-Format. The EGI (eiger
graphics image format) is a lossless image format used to encode images and graphics on the
eigerPanel. The format is converted from and to PC image formats with the eiger graphics suite
software. Free download from www.eigergraphics.com/download.htm .

The methods in the class Colors_15 are used to:

manipulate colours, darken, brighten grayvalue
 convert colours from and to 24bit colour space

Change colours

Colors_15.AutoColor(VarInt:Destination,VarInt:Source)

The method Colors_15.AutoColor(Destination,Source) sets the destination with the

colour black or white depending on the colour of the source. For dark colours the method returns
white and for bright colours the method returns black. The method is used to set the text colour
with maximum contrast automatically.

Colors_15.AutoColor(eI.TextColor,eI.BackColor)

Special case:

If the input colour is transparency, the method doesn’t change the destination colour.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
T B4 B3 B2 B1 B0 G4 G3 G2 G1 G0 R4 R3 R2 R1 R0

http://www.eigergraphics.com/

72 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Colors_15.BlackWhite(VarInt:Destination,VarInt:Source)

The method Colors_15.BlackWhite(Destination,Source) sets the destination with
the colour black or white depending on the colour of the source. For dark colours the method
returns black and for bright colours the method returns white. The method is used to convert a
colour to its monochrome representation.

Colors_15.BlackWhite(eI.TextColor,eI.BackColor)

Special case:

If the input colour is transparency, the method doesn’t change the destination colour.

Colors_15.GreyValue(VarInt:Destination,VarInt:Source)

The method Colors_15.GreyValue(Destination,Source) calculates the grey value of
the source colour and returns it to the destination. The method is perfectly suited to draw inactive
buttons.

Colors_15.GreyValue(eI.BackColor,eI.FillColor)

Special case:

If the input colour is transparency, the destination colour is set transparent.

http://www.eigergraphics.com/

eigerScript methods 73

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Colors_15.Brighten(VarInt:Dest,VarInt:Source)

The method Colors_15.Brigthten(Destination,Source) returns a brightened colour
of the source colour.

Colors_15.Brighten(eI.LineColor,eI.BackColor)

Special case:

If the input colour is transparency, the method doesn’t change the destination colour.

Colors_15.Darken(VarInt:Dest,VarInt:Source)

The method Colors_15.Darken(Destination,Source) returns a darkened colour of the
source colour.

Colors_15.Darken(eI.LineColor,eI.BackColor)

Special case:
If the input colour is transparency, the method doesn’t change the destination colour.

Colors_15.ColorMix(VarInt:Dest,VarInt:Color1,VarInt:
Color2)

The method Colors_15.ColorMix(Destination,Color1,Color2) returns the mixed
colour of color1 and color2. Every colour can be mixed with the grey palette to obtain different
colours from a base colour. The colours are mixed in a 1:1 ratio.

Colors_15.ColorMix(eI.LineColor,eI.BackColor,grey204)

http://www.eigergraphics.com/

74 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Colors.ColorMix_3to1_5Bit(VarInt:Dest,VarInt:Color1,
VarInt:Color2)

The method Colors_15.ColorMix_3to1(Destination,Color1 3 parts,Color2 1
part) returns the mixed colour of the two input colours. The colours are mixed in a 3:1 ratio.

Colors_15.ColorMix_3to1(eI.LineColor,eI.BackColor,grey204)

Colors_15.InverseColor(VarInt:Destination,VarInt:Source)

The method Colors.InverseColor(Destination,Source) returns the complementary
colour of the source colour.

Colors.InverseColor(eI.LineColor,eI.BackColor)

Special case:

If the input colour is transparency, the method doesn’t change the destination colour.

Manipulate colour channels

The methods subsequently described are used to manipulate single colour channels of the
colour variable. These methods are perfectly suited to draw colour gradients.

This view shows a rectangular
colour flares computed with the
methods described below

http://www.eigergraphics.com/

eigerScript methods 75

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Colors_15.MoreRed(VarInt:COLOR)

The method Colors_15.MoreRed(Color) adds one TIC to the red channel. If the colour is
already at its maximum value, it becomes zero again.

Colors_15.MoreRed(eI.FillColor)

Special case:

If the input colour is transparency, no change is performed.

Colors_15.MoreRedLimit(VarInt:COLOR)

The method Colors_15.MoreRedLimit(Color) adds one TIC to the red channel. If the
colour is already at its maximum value, it remains unchanged.

Colors_15.MoreRedLimit(eI.FillColor)

Special case:

If the input colour is transparency, no change is performed.

Colors_15.MoreGreen(VarInt:COLOR)

The method Colors_15.MoreGreen(Color) adds one TIC to the green channel. If the
colour is already at its maximum value, it becomes zero again.

Colors_15.MoreGreen(eI.FillColor)

Special case:

If the input colour is transparency, no change is performed.

Colors_15.MoreGreenLimit(VarInt:COLOR)

The method Colors_15.MoreGreenLimit(Color) adds one TIC to the green channel. If
the colour is already at its maximum value, it remains unchanged.

http://www.eigergraphics.com/

76 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Colors_15.MoreGreenLimit(eI.FillColor)

Special case:

If the input colour is transparency, no change is performed.

Colors_15.MoreBlue(VarInt:COLOR)

The method Colors_15.MoreBlue(Color) adds one TIC to the blue channel. If the colour
is already at its maximum value, it becomes zero again.

Colors_15.MoreBlue(eI.FillColor)

Special case:

If the input colour is transparency, no change is performed.

Colors_15.MoreBlueLimit(VarInt:COLOR)

The method Colors_15.MoreBlueLimit(Color) adds one TIC to the blue channel. If the
colour is already at its maximum value, it remains unchanged.

Colors_15.MoreBlueLimit(eI.FillColor)

Special case:

If the input colour is transparency, no change is performed.

Colors_15.LessRed(VarInt:COLOR)

The method Colors_15.LessRed(Color) subtracts one TIC to the red channel. If the
colour is already at its minimum value, it becomes max again.

Colors_15.MoreRed(eI.FillColor)

Special case:

If the input colour is transparency, no change is performed.

Colors_15.LessRedLimit(VarInt:COLOR)

The method Colors_15.LessRedLimit(Color) subtracts one TIC to the red channel. If
the colour is already at its minimum value, it remains unchanged.

http://www.eigergraphics.com/

eigerScript methods 77

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Colors_15.LessRedLimit(eI.FillColor)

Special case:

If the input colour is transparency, no change is performed.

Colors_15.LessGreen(VarInt:COLOR)

The method Colors_15.LessGreen(Color) subtracts one TIC to the green channel. If the
colour is already at its minimum value, it becomes max again.

Colors_15.LessGreen(eI.FillColor)

Special case:

If the input colour is transparency, no change is performed.

Colors_15.LessGreenLimit(VarInt:COLOR)

The method Colors_15.LessGreenLimit(Color) subtracts one TIC to the green channel.
If the colour is already at its minimum value, it remains unchanged.

Colors_15.LessGreenLimit(eI.FillColor)

Special case:

If the input colour is transparency, no change is performed.

Colors_15.LessBlue(VarInt:COLOR)

The method Colors_15.LessBlue(Color) adds subtracts TIC to the blue channel. If the
colour is already at its minimum value, it becomes max again.

Colors_15.LessBlue(eI.FillColor)

Special case:

If the input colour is transparency, no change is performed.

Colors_15.LessBlueLimit(VarInt:COLOR)

The method Colors_15.LessBlueLimit(Color) subtracts one TIC of the blue channel. If
the colour is already at its minimum value, it remains unchanged.

http://www.eigergraphics.com/

78 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Colors_15.LessBlueLimit(eI.FillColor)

Special case:

If the input colour is transparency, no change is performed.

Set or get colour values

The colour values are packed in a UINT16 dataword. The single components red green and
blue can be extracted and composed with methods. There are also methods to convert a 24bit
colour value to the eiger COLOR15 representation.

Colors_15.Load_RGB(VarInt:Destination,VarInt:R,VarInt:G,
VarInt:B)

The method Colors_15.Load_RGB(Destination,R,G,B) returns the packed COLOR15
representation of the colour composed of the red, green and blue channels. Only the low byte of
the RGB input values is used. The input values have to be within the range of [0..255]. The
method is useful to convert the 24-bit colour space to the COLOR15 colour space used on the
eigerPanel.

Colors_15.Load_RGB(eI.TextColor,0,0,255)

Colors_15.GetRed(VarInt:Destination,VarInt:Color)

The method Colors_15.GetRed(Destination,Color) returns the 5-bit red component of
a colour. The return value is in the range of [0..31].

Colors_15.GetRed(eI.R00,eI.FillColor)

Colors_15.GetGreen(VarInt:Destination,VarInt:Color)

The method Colors_15.GetGreen(Destination,Color) returns the 5-bit green
component of a colour. The return value is in the range of [0..31].

Colors_15.GetGreen(eI.R00,eI.FillColor)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

input T B4 B3 B2 B1 B0 G4 G3 G2 G1 G0 R4 R3 R2 R1 R0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

output 0 0 0 0 0 0 0 0 0 0 0 R4 R3 R2 R1 R0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

input T B4 B3 B2 B1 B0 G4 G3 G2 G1 G0 R4 R3 R2 R1 R0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

output 0 0 0 0 0 0 0 0 0 0 0 G4 G3 G2 G1 G0

http://www.eigergraphics.com/

eigerScript methods 79

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Colors_15.GetBlue(VarInt:Destination,VarInt:Color)

The method Colors_15.GetBlue(Destination,Color) returns the 5-bit green
component of a colour. The return value is in the range of [0..31].

Colors_15.GetBlue(eI.R00,eI.FillColor)

Colors_15.PutRed(VarInt:Destination,VarInt:Color)

The method Colors_15.PutRed(Destination,Color) replaces the 5-bit red component
of a colour in the destination colour variable.

Colors_15.PutRed(eI.R00,eI.FillColor)

Colors_15.PutGreen(VarInt:Destination,VarInt:Color)

The method Colors_15.PutGreen(Destination,Color) replaces the 5-bit green
component of a colour in the destination colour variable.

Colors_15.PutGreen(eI.R00,eI.FillColor)

Colors_15.PutBlue(VarInt:Destination,VarInt:Color)

The method Colors_15.PutBlue(Destination,Color) replaces the 5-bit blue
component of a colour in the destination colour variable.

Colors_15.PutBlue(eI.R00,eI.FillColor)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

input T B4 B3 B2 B1 B0 G4 G3 G2 G1 G0 R4 R3 R2 R1 R0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

output 0 0 0 0 0 0 0 0 0 0 0 B4 B3 B2 B1 B0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

input 0 0 0 0 0 0 0 0 0 0 0 R4 R3 R2 R1 R0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

output 0 B4 B3 B2 B1 B0 G4 G3 G2 G1 G0 R4 R3 R2 R1 R0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

input 0 0 0 0 0 0 0 0 0 0 0 G4 G3 G2 G1 G0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

output 0 B4 B3 B2 B1 B0 G4 G3 G2 G1 G0 R4 R3 R2 R1 R0

http://www.eigergraphics.com/

80 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Exchange colour channels

All colours are composed of three colour composites red, green and blue. In eigerScript there
are methods to exchange colour components what gives related colours in the colour circle (c.f.
colour table below). Starting from hotpink in the left upper corner the consecutive order of colours
is shown for this example.

Colors_15.Swap_Red_Green(VarInt:Dest,VarInt:Source)

The method Colors_15.Swap_Red_Green(Destination,Source) swaps the red and the
green colour component.

Colors_15.Red_Green(eI.FillColor,eI.FillColor)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

input 0 0 0 0 0 0 0 0 0 0 0 B4 B3 B2 B1 B0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

output 0 B4 B3 B2 B1 B0 G4 G3 G2 G1 G0 R4 R3 R2 R1 R0

http://www.eigergraphics.com/

eigerScript methods 81

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Colors_15.Swap_Green_Blue(VarInt:Dest,VarInt:Source)

The method Colors_15.Swap_Green_Blue(Destination,Source) swaps the green and
the blue colour component.

Colors_15.Swap_Green_Blue(eI.FillColor,eI.FillColor)

Colors_15.Swap_Blue_Red(VarInt:Dest,VarInt:Source)

The method Colors_15.Swap_Blue_Red(Destination,Source) swaps the blue and the
red colour component.

Colors_15.Swap_Blue_Red(eI.FillColor,eI.FillColor)

Colors_15.SetColorPalette(VarInt:Source)

The method Colors_15.SetColorPalette(Source) fills the appropriate colour palette to
the eI.Palette_Color_x registers. Below an example is given for reference. The method is
internally used to compute colour gradients for objects.

Colors_15.SetColorPalette(eI.FillColor)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

input 0 B4 B3 B2 B1 B0 G4 G3 G2 G1 G0 R4 R3 R2 R1 R0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

output 0 B4 B3 B2 B1 B0 R4 R3 R2 R1 R0 G4 G3 G2 G1 G0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

input 0 B4 B3 B2 B1 B0 G4 G3 G2 G1 G0 R4 R3 R2 R1 R0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

output 0 G4 G3 G2 G1 G0 B4 B3 B2 B1 B0 R4 R3 R2 R1 R0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

input 0 B4 B3 B2 B1 B0 G4 G3 G2 G1 G0 R4 R3 R2 R1 R0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

output 0 R4 R3 R2 R1 R0 G4 G3 G2 G1 G0 B4 B3 B2 B1 B0

http://www.eigergraphics.com/

82 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Colors_15.Cvt_ColorComp_5to8(VarInt:Color8B,VarInt:Color
5B)

The method Colors_15.Cvt_ColorComp_5to8(Destination,Color) converts a 5-bit
colour component in a 8-bit colour component. The conversion is established with a lookup table.

Colors_15.Cvt_ColorComp_5to8(eI.R00,eI.FillColor)

input

output

Colors_15.Cvt_ColorComp_8to5(VarInt:Color5B,VarInt:Color
8B)

The method Colors_15.Cvt_ColorComp_8to5(Destination,Color) converts a 8-bit
colour component in a 5-bit colour component. The conversion is established with a lookup table.

Colors_15.Cvt_ColorComp_8to5(eI.FillColor,eI.R00)

input

output

Application Hint:

The code sequence converts a 8-bit colour component to a 5-bit colour component and back
with the effect of having the exact 8-bit colour value as on the eigerPanel. For RGB colours it has
to be done with every single colour component.

Colors_15.Cvt_ColorComp_8to5(eI.FillColor,eI.R00)
Colors_15.Cvt_ColorComp_5to8(eI.R00,eI.FillColor)

http://www.eigergraphics.com/

eigerScript methods 83

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Colors_15.GetPixelColor(VarInt:Ziel,VarInt:X,VarInt:Y)

The methods Colors_15.GetPixelColor(Target,X,Y) returns the colour of the pixel at
absolute coordinates (X/Y) in the AVR video RAM. It is a good idea to think the method as a
pipette in a graphics program. When the registers eI.Mouse_X_Down and eI.Mouse_Y_Down
are used as coordinates, a colour selector can be programmed.

Example 1:

Get the pixel colour at coordinate (50,355)
Colors.GetPixelColor(eI.FillColor,50,355)

Example 2:

Get the pixel colour at coordinate (eI.Mouse_X_Down, eI.Mouse_Y_Down)
Colors.GetPixelColor(eI.FillColor,eI.Mouse_X_Down,eI.Mouse_Y_Down)

Class InOut

The methods of the class InOut serve to handle the peripherals on the FOX embedded
computer. Depending on the model of the computer the features may differ.

For the available peripherals on a given computer please refer to the relevant hardware manual
available at www.eigergraphics.com.

InOut.Read_ADC(VarInt:Channel,VarInt:Value)

The method InOut.Read_ADC(Channel,TargetVariable) reads an analog input channel
from an analog to digital converter DAC. The value that is converted is returned in a variable or a
register as second parameter.

InOut.Read_ADC(0,eI.R02)

Remark:

For computers with a 10-bit ADC the input range is from 0 to 1023.

The number of input channels and the sensitivity TIC/V depend on the computer model.

InOut.Read_Input(VarInt:InputPort,VarInt:Value)

The method InOut.Read_Input(Channel,TargetVariable) reads a digital input from a
port. The value (0 or 1) is returned in a variable or a register as second parameter.

InOut.Read_Input(Input_IP91,eI.R02)

http://www.eigergraphics.com/

84 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Remark:

The number of input channels depend on the computer model.

InOut.PWM_Out(VarInt:OutputPort,VarInt:Value)

The method InOut.PWM_Out(Channel,TargetVariable) sets a PWM capable output
channel with a value. The value is in the range of 0..1000.

InOut.PWM_Out(Output_OP76,500)

Remark:

The number of PWM output channels depend on the computer model.

Class Fill

The methods of the class Fill are used to fill often used registers in the eVM quickly. A label
object for instance is described by 17 properties that have to be filled into the registers. Most often
the object properties of different objects are the same. The simplest solution is to store the
properties in structures. It is also possible to hold the structures in an include file. So changes are
performed quickly and consistent when a batch compile is executed. The structures are
addressed by a pointer as parameter to the fill method. It is vital to respect the order of the
properties in the structure otherwise unexpected effects may occur.

Special codes are used to control the fill process to the registers:

no_change the content of a register remains unchanged.
as_FillColor the colour is copied from the register eI.FillColor.
as_DisplayColor the colour is copied from the register eI.DisplayColor as

background colour
autocolor the colour is copied from the register eI.FillColor and the

Autocolour method is used to compute the best contrast. This is
specially to assign the colour of the eI.TextColor.

darken_FillColor the shaded colour of the colour in the register eI.FillColor is
assigned. This is interesting for the register eI.LineColor used
for borders

brighten_FillColor the brightened colour of the colour in the register eI.FillColor is
assigned.

Fill.LabelParameter(labelRelative24)

The method Fill.LabelParameter(labelRelative24) loads the registers that are used
for a label object. It is very important to know, that with special codes operations can be performed
to influence the load process.

http://www.eigergraphics.com/

eigerScript methods 85

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Example:
Fill.LabelParameter(AK1_Key_Structure_UP) ; load properties to the registers

SUB Structures

AK1_Key_Structure_UP:

 INLINEWORDS (no_change) ; corresponds to eI.Pos_X1
 INLINEWORDS (no_change) ; corresponds to eI.Pos_Y1
 INLINEWORDS (AK1_Key_Width) ; corresponds to eI.Width
 INLINEWORDS (AK1_Key_Height) ; corresponds to eI.Height
 INLINEWORDS (8) ; corresponds to eI.SpaceLeft
 INLINEWORDS (8) ; corresponds to eI.SpaceRight
 INLINEWORDS (0) ; corresponds to eI.HorizontalAdjust
 INLINEWORDS (0) ; corresponds to eI.VericalAdjust
 INLINEWORDS (steelblue) ; corresponds to eI.FillColor
 INLINEWORDS (as_FillColor) ; corresponds to eI.BackColor
 INLINEWORDS (as_FillColor) ; corresponds to eI.LineColor
 INLINEWORDS (autocolor) ; corresponds to eI.TextColor
 INLINEWORDS (Pos_center) ; corresponds to eI.Position
 INLINEWORDS (Orientation_0deg) ; corresponds to eI.Orientation
 INLINEWORDS (normal) ; corresponds to eI.Appearance
 INLINEWORDS (color_button_3D_raised) ; corresponds to eI.BorderStyle
 INLINEWORDS (Font_Arial_14n) ; corresponds to eI.FontNumber
 INLINEWORDS (as_Skin_FormBodyColor) ; corresponds to eI.BackgroundColor
ENDSUB

Class Load

The methods of the class Load are used to load often used combinations of registers. The
values are given as parameters. The order of the parameters is very important in order to have the
right result.

Load.Pos_X1Y1(VarInt:X1,VarInt:Y1)

The method Load.Pos_X1Y1(X-Position,Y-Position) loads the registers eI.Pos_X1
and eI.Pos_Y1.

 Load.Pos_X1Y1(50,100)

is equal to:

 eI.Pos_X1 := 50
 eI.Pos_Y1 := 100

Load.Pos_X2Y2(VarInt:X2,VarInt:Y2)

The method Load.Pos_X2Y2(X-Position,Y-Position) loads the registers eI.Pos_X2
and eI.Pos_Y2.

 Load.Pos_X2Y2(150,300)

http://www.eigergraphics.com/

86 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Load.Width_Height(VarInt:W,VarInt:H)

The method Load.Width_Height(Width,Height) loads the registers eI.Width and
eI.Height.

Load.Geometry_XYWH(VarInt:X,VarInt:Y,VarInt:W,VarInt:H)

The method Load.Geometry_XYWH(X-Position,Y-Position,Width,Height) loads
the registers eI.Pos_X1 and eI.Pos_Y1 and also eI.Width and eI.Height. The method is
useful to span a rectangle for a hotspot or an image.

 Load.Geometry_XYWH(200,30,150,300)

is equal to:
 eI.Pos_X1 := 200
 eI.Pos_Y1 := 30
 eI.Width := 150
 eI.Height := 300

Load.Offset_XY(VarInt:X,VarInt:Y)

The method Load.Offset_XY(X,Y) loads the registers eI.Offset_X and eI.Offset_Y.

 Load.Offset_XY(200,30) ; eI.Offset_X := 200, eI.Offset_Y := 30

Load.Color_FL(VarInt:FillColor,VarInt:LineColor)

The method Load.Color_FL(FillColor,LineColor) loads the registers eI.FillColor
and eI.LineColor with a colour value.

 Load.Color_FL(red,crimson) ; eI.FillColor and eI.LineColor

Load.Color_BT(VarInt:BackColor,VarInt:TextColor)

The method Load.Color_BT(BackColor,TextColor) loads the registers eI.BackColor
and eI.TextColor with a colour value.

 Load.Color_BT(red,white) ; eI.BackColorText and eI.TexColor

http://www.eigergraphics.com/

eigerScript methods 87

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Tip:
The method Label.Color(color) can be used to set the colours of all four registers.

Class Transfer

The methods of the class Transfer are used to load or copy groups of often used eVM
registers. The registers hold values that are transferred into other registers. The class Transfer
has also methods to transport variables of same length but different types.

Transfer.HotSpotGeometry()

All geometric data of a HotSpot are stored in the HotSpot-table as position, offset and size. For
the animation of a button exactly this information is useful. The method
Transfer.HotSpotGeometry() loads the geometry registers with the return values of a
HotSpots. The method executes the following code sequence:

 eI.Width := eI.HS_Width ; width of the HotSpot
 eI.Height := eI.HS_Height ; height of the HotSpot
 eI.Pos_X1 := eI.HS_Pos_X ; X-Position of the HotSpot
 eI.Pos_Y1 := eI.HS_Pos_Y ; Y-Position of the HotSpot
 eI.Offset_X := eI.HS_Offset_X ; X-Offset of the HotSpot
 eI.Offset_Y := eI.HS_Offset_Y ; Y-Offset of the HotSpot

The method is mainly used to implement a position-independent control.

http://www.eigergraphics.com/

88 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Program control flow

eigerScript uses keywords to implement flow control structures as loops, selections and
conditional code sequences.

Infinite loop

The infinite loop is used to stay in the view while the eVM executes the events that are
generated. Between the LOOP - ENDLOOP statement commands may be executed. The loop can
be left by the EXITLOOP statement.

 LOOP

 EXITLOOP

 ENDLOOP

Remark: Up to version 0.67 of eigerStudio LOOP - ENDLOOP can only be used in the view source
files (*.EVS). In the project definition file (*.EPR) it does not work.

FOR-NEXT loop

The FOR-NEXT loop runs a code in the loop for a defined number of times. After all of the
statements have been executed in the first loop cycle, the program increments the value of the
loop counter (e.g. Counter.I) by one. The loop can be left by the EXITFOR statement when an
error has occurred.

 FOR Counter.I := Start.I TO End.I

 EXITFOR

 NEXT

REPEAT-UNTIL loop

The REPEAT-UNTIL loop runs a loop cycle at least once and at the end checks a condition to
decide whether the loop has to be repeated. The loop cycle can be left by the EXITREPEAT
statement when an error has occurred.

 REPEAT

 EXITREPEAT

 UNTIL eI.R00 == 5

http://www.eigergraphics.com/

eigerScript methods 89

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Example:

 REPEAT
 y := 2 * y
 IF b == 0 THEN
 EXITREPEAT
 ENDIF
 y := y / b
 UNTIL y > 100

WHILE-DO loop

The WHILE-DO loop checks a condition before entering the loop. If the condition is false the
code in the loop is never executed. At the loop end the check is executed and the code is skipped
if the condition is false and run if the condition is true respectively. The loop can be left by the
EXITWHILE statement when an error has occurred.

 WHILE eI.R00 <= 10

 EXITWHILE

 ENDWHILE

Example:

 WHILE y <= 100
 y := 2 * y
 IF b == 0 THEN
 EXITWHILE
 ENDIF
 y := y / b
 ENDWHILE

IF THEN ELSIF ELSE ENDIF conditional code sequence

The IF-THEN-ELSIF-ELSE-ENDIF statement enables conditional code execution. If a
condition is true the code is executed. The simplest form is the IF-THEN-ENDIF statement that
checks a condition that is executed, when the condition is true.

 IF eI.R00 < 18 THEN
 Label.Text ('cold')
 ENDIF

The statement IF-THEN-ELSE-ENDIF checks a condition and executes the first code block if
the condition is true and the second code block if the condition is false.

http://www.eigergraphics.com/

90 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

 IF eI.R00 < 18 THEN
 Label.Text ('cold')
 ELSE
 Label.Text ('not cold')
 ENDIF

The statement IF-THEN-ELSIF-ELSE-ENDIF checks a first condition and executes the first
code block if the condition is true, then it checks another condition and executes the associated
code block if the condition is true. As many ELSIF statements can be placed to check all
conditions. This eliminates the need of a switch statement or a case statement as found in other
programming languages.

 IF eI.R00 < 18 THEN
 Label.Text ('cold')
 ELSIF eI.R00 < 25 THEN
 Label.Text ('normal')
 ELSIF eI.R00 < 32 THEN
 Label.Text ('hot')
 ELSE
 Label.Text ('very hot')
 ENDIF

http://www.eigergraphics.com/

eigerScript methods 91

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Error handling

Several methods can end up in an error condition because for example input parameters are
invalid or the desired result can not be achieved as in the case of a division by zero. The error is
signalled by the eVM in two registers:

eI.Status general Status: error/success

The eVM is programmed so that if a method has an error, it returns error in the eI.Status
register. Before entering a section that is interesting for error checking, the eI.Status :=
success is assigned. Every method of a sequence then may set the eI.Status to the error
state. This feature of the eVM frees the programmer from a bold error handling, when this is not
desired.

The method that throws an error writes an error code in the register eI.ErrorCode. With this
error code the error can further be examined. For example the string methods return error codes
that say if a position was not in the string or that there was not enough space in the string.

http://www.eigergraphics.com/

92 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Debugging code

The methods of the class Debug serve to find run time errors. When the content of variables
has to be traced without writing them on the screen the methods of the class Debug are useful for
this task. The debug strings are output on the serial interface COM1 that is reserved for
debugging and programming the system.

Sometimes HotSpots want to be examined. Then it is a good idea to draw a rectangle around
the HotSpot to see where the HotSpot was installed.

Turn debug mode OFF/ON

Too many debug outputs can make an application slow. If this is the case you may turn debug
outputs off by assigning the value 0 to the register eI.eVM_DebugMode:

eI.eVM_DebugMode := 4 Debug Mode is ON (default)
eI.eVM_DebugMode := 0 Debug Mode is OFF

Works from Firmware V2.04 (20.06.2013) and higher.

The change of debug mode is temporarily, that means it is only turned off (or on) in the
subroutine, where the mode is being changed. If you want to set the debug mode off for a whole
view, you need to place the changing code into the main program (between BEGINVIEW and
ENDVIEW).
In a view, where the debug mode is turned off, you still can use a debug method, e.g. for control
reason. In that case you need to set eI.eVM_DebugMode := 4 before using the debug method.
After exiting that subroutine debug mode is automatically turned off (=0) again.

http://www.eigergraphics.com/

eigerScript methods 93

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Working with CSV-Files

What are CSV-Files ?

CSV is the abbreviation of comma separated value-files. Basically a CSV-file is an ASCII text
file, which can be edited with an editor or with WordPad. This file is used as a small database as a
very simple EXCEL sheet. The file ending is often *.CSV. A CSV-file consists of data lines. Every
data line holds a data record. The columns are separated by a separator character. The separator
character we (in Europe) use is the semicolon (;) 0x3B. When in EXCEL a file is stored, EXCEL
separates the columns by a semicolon. The end of line is formed by CR LF (0x0A,0x0D). The
CSV-format is not standardized. When we implemented the CSV on the eVM we had the design
goal to be as compatible as possible to the EXCEL spread sheet program. For this the data
exchange with EXCEL works pretty well.

The eigerVM has methods to use CSV-files as small databases. Values can be read from and
searched in a CSV-file. You only can apply the methods of class CSV to a CSV-file after its
content is read into a CSV-string (e.g. MatchFile.$). The class File incorporates the method
to read CSV-files:

STRING [40000] MatchFile.$ =''

 File.Read_CSV('C:/TG12/DATA/COLORS.CSV',MatchFile.$)

In this example “MatchFile” is defined as a string with max. 40'000 characters. If the file is
smaller of course a smaller size for the string can be used. The limit is however at 65'000
characters due to the addressing with 16 bit pointers. If the file is longer than the string, the file is
not read entirely and data is lost.

At the time of loading the file it is analyzed, and checked for the number of columns and lines.

As example there is a CSV-file with nonexistent test addresses. EXCEL stores the input as
below and reads the file without problems. The only thing that is not stored in a CSV is the
formatting as font attributes, colours and row sizes, as it is normal for a *.XLS file.

Many programs can handle CSV-files. That makes a data exchange possible. The advantage
of the CSV-file is the compact representation of data. It is much more compact than the XML-
format, because only the data but not opening and closing tags are stored. The XML-files are from
9 to 80 times larger than the similar CSV-files. On systems with limited resources the CSV-format
is the best selection.

It is possible to have a column descriptor in the first line. The first line is handled as standard
data record by the eVM.

After edition of a CSV-string the content can be written back as CSV-file. The class File
incorporates the method to write CSV-files:

 File.Write_TextFile('C:/TG12/DATA/COLORS.CSV',MatchFile.$)

This method overwrites the the current CSV-file on the CompactFlash Card with the new
content.

http://www.eigergraphics.com/

94 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Another method of class File can be used to directly append new record at the end of a
CSV-file:

 File.AppendString('C:/TG12/DATA/LOG.CSV',NewRecord.$)

In this case the LOG.CSV on the CompactFlash Card gets a new data line.

Example of an adress database:

Aregger;Barbara;Hauptstrasse 59;6300;Zug;041 760 23 99;barbara.aregger@gmx.ch
Amsler;Viola;Am Hag 12;8704;Bachs;044 980 12 45;hagivi@bluewin.ch
Berger;Hans;Schaffhauserstr. 205;8024;Züich;043 204 52 67;haberzu@green.ch
Caviezel;Andrin;Calandastrasse 34;7000;Chur;081 201 01 01;canrin@tiscali.ch
Danuser;Carl;Rheinstrasse 174;7000;Chur;081 202 30 69;Carl.Danuser@bluewin.ch

The CSV-file enables the data exchange from and to the PC (EXCEL).
TIP: Store the EXCEL file under the data type CSV (separator char) *.CSV

Settings to store a CSV-files in EXCEL.

http://www.eigergraphics.com/

eigerScript methods 95

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

Class CSV

Analyse table

You only can apply the methods of class CSV to a CSV-file after its content is read into a
CSV-string (e.g. MatchFile.$), cf. p. 95.

CSV.Analyze_String(VarStr:CSV_File)

The method analyses a CSV-String. It determines the number of Lines and Columns etc. This
method is automatically executed when the content of a CSV-file is being read into a CSV-String.
If there have been made changes to the CSV-String the method needs to be executed prior to
applying further CSV-methods.

 CSV.Analyze_String(MatchFile.$)

CSV.GetMax_Lines(VarInt:Lines,VarStr:CSV_File)

The method returns the number of lines that are in the CSV-file.

 CSV.GetMax_Lines(MatchFile_LineNoMax.I,MatchFile.$)

Hint 1:

If the CSV has more lines than the method CSV.GetMax_Lines returns, there is mostly a not
orthogonal structure of the CSV the reason for this. Specially when the file is edited with an editor
this is often the problem. Make sure that every line has the correct number of columns.

Hint 2:
The method may return a strange number of Lines when the CSV-String consists of just one

line together with a CRLF at its end. Therefore beware that you avoid this combination.

CSV.GetMax_Columns(VarInt:Columns,VarStr:CSV_File)

The method returns the number of columns in a CSV file or CSV string. The number of
columns in a single-line-CSV-string may also be computed (cf. Example below).

 CSV.GetMax_Columns(MatchFile_ColumnsMax.I,MatchFile.$)

 TestString2 := 'monday;tuesday;wednesday;tursday;friday;saturday;sunday\r\n')
 CSV.GetMax_Columns(ColumnsMax.I,TestString2.$)

Returns ColumnsMax = 7 for the seven week days in the string

http://www.eigergraphics.com/

96 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

CSV.DataFieldLength(OutputFieldLength.I,CSV_String.$,Lin
eNumber.I,ColumnNumber.I)

The method returns the number of characters of a field addressed by line and column number.

CSV.DataFieldLength(OutputFieldLength.I,MatchFile.$,line.I,column.I)

If MatchFile.$ contains the address table of 94 and line.I = 2 and column.I = 2 (field
content is ‘Viola’) the method would return OutputInteger.I = 5 .

Retrieve data from the table

You only can apply the methods of class CSV to a CSV-file after its content is read into a
CSV-string (e.g. MatchFile.$), cf. p. 95.

CSV.Get_Integer(OutputInteger.I,CSV_String.$,LineNumber.
I,ColumnNumber.I)

The method returns an Integer of the field addressed by line and columb number.

In the example of our database (cf. p. 94) the third column is the column of postal code.

CSV.Get_Integer(OutputInteger.I,MatchFile.$,line.I,column.I)

If MatchFile.$ contains the address table of 94 and line.I = 3 and column.I = 4 the
method would return OutputInteger.I = 8024.

CSV.Get_Long(OutputLong.L,CSV_String.$,LineNumber.I,Colu
mnNumber.I)

The method returns a Long of the field addressed by line and columb number.

In the example of our database (cf. p. 94) in the third column is the column of postal code.

CSV.Get_Integer(OutputLong.L,MatchFile.$,line.I,column.I)

If MatchFile.$ contains the address table of 94 and line.I = 3 and column.I = 4 the
method would return OutputLong.L = 8024.

http://www.eigergraphics.com/

eigerScript methods 97

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

CSV.Get_LongDeci(OutputLongDeci.L,CSV_String.$,LineNumbe
r.I,ColumnNumber.I,DecimalPlaces.I)

The method returns a Long of the field addressed by line and columb number.

In the example of our database (cf. p. 94) in the third column is the column of postal code.

CSV.Get_LongDeci(MyLongDeci.L,CSV_String.$,LineNumber.I,ColumnNumber.I,D
ecimalPlaces.I)

If the value in the field determined by line and columb number is 1.23 and DecimalPlaces.I =
3 the method would return OutputLongDeci.L = 1230. At the subsequent use of this Long
you need to always be aware of its number of decimal places. So if you want to convert it to a
string in order to display it on a label you would use following method:

Str.Cvt_LongDeci(Label_Text.$,MyLongDeci.L,IntegerDigits.I,DecimalPlaces.I)

while DecimalPlaces.I = 3 , as you determined before.

CSV.Get_HighColor(OutputColor.I,CSV_String.$,LineNumber.
I,ColumnNumber.I)

The method returns a color value of the field addressed by line and columb number. The value
in the table field must be in HEX (3x8 bit, e.g. #25AAFF) else the method is not executed. The
FOX embedded computer converts this HEX value into the closest color value of the 3x5bit color
space (e.g. #7EA4) and saves it as integerHEX (e.g. OutputColor.I = 7EA4)

CSV.Get_ByteHex(OutputByteHex.I,CSV_String.$,LineNumber.
I,ColumnNumber.I)

The method returns a ByteHEX value of the field addressed by line and columb number. The
value in the table field must be in ByteHEX (1x8bit, e.g. AF). If there is a number of more than 2
digits the method would read the first two digits (e.g. 1E3F would be read as 1E). In cases where
no ByteHEX value can be read the method is not executed.

CSV.Get_WordHex(OutputWordHex.I,CSV_String.$,LineNumber.
I,ColumnNumber.I)

The method returns a WordHEX value of the field addressed by line and columb number. The
value in the table field must be in WordHEX (2x8bit, e.g. 1E3F). If there is a number of more than
4 digits the method would read the first four digits (e.g. 1A2E22 would be read as 1A2E). In cases
where no WordHEX value can be read the method is not executed.

http://www.eigergraphics.com/

98 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

CSV.Get_LongHex(OutputLongHex.I,CSV_String.$,LineNumber.
I,ColumnNumber.I)

The method returns a LongHEX value of the field addressed by line and columb number. The
value in the table field must be in WordHEX (4x8bit, e.g. 2F04AA3B). If there is a number of more
than 8 digits the method would read the first four digits (e.g. 1A2E2234FF would be read as
1A2E2234). In cases where no LongHEX value can be read the method is not executed.

CSV.Get_String(OutputString.$,CSV_String.$,LineNumber.I,
ColumnNumber.I)

The method returns the string that is addressed by line and column number. In the example of
our database (cf. p. 94) in the fifth column is the column of the cities.

CSV.Get_String(OutputString.$,MatchFile.$,line.I,column.I)

when the MatchFile is the address table, the method returns

CSV.Get_String(OutputString.$,MatchFile.$,5,2)

as OutputString we get the city in the 5th column of the 2nd line : OutputString.$ = 'Bachs'

Search data in the table

You only can apply the methods of class CSV to a CSV-file after its content is read into a
CSV-string (e.g. MatchFile.$), cf. p. 95.

CSV.Find_in_Column(VarStr:CSV-String,VarInt:StartLine,
VarInt:ColumnNumber,VarStr:MatchString,VarInt:LineNumber
,VarStr:DataLine)

The method searches for the MatchString, in the indicated column. In our example of the
address table (cf. p. 94) you can search for a city or for a first name depending which column you
selected. The method searches from the StartLine until the first entry matches. If an entry is found
the register eI.Boolean is set to true (= 1), otherwise to false (= 0). The match string may
consist of a few starting characters. The first match is reported as line number and also the whole
data record to avoid new access to the CSV-file.

The method converts the characters to small letters to avoid problems with small and capital
letters.

CSV.Find_in_Column(MatchFile.$,1,3,'Hag',LineNo.I,TestString.$)

Input:

• CSV-String (e.g. MatchFile.$) in which the content of the CSV-File is temporarily
stored.

• Start line: Line of the CSV-Table, from where I want to start my top-down search (e.g.
Line 1).

http://www.eigergraphics.com/

eigerScript methods 99

V1.10 07.11.2011 S-TEC electronics AG www.eigergraphics.com

• Column number: Column in which the search should be performed (e.g. in the third
Column)

• Match string: Search term which I want to find in the column (e.g. “Hag”).

Input:

• Line Number: Line in which my match string has been found (e.g. “Hag” is part of line
number 2 , see database example p.94) in which the content of the CSV-File is
temporarily stored. If my MatchFile is the address table (cf. p. 94), “Hag” is part of line 2
and the method returns value 2 as LineNo.I.

• Data line: If my MatchFile is the address table (cf. p. 94), the method returns the entire
line 2 (the third line) as TestString.$:

Amsler;Viola;Am Hag 12;8704;Bachs;044 980 12 45;hagivi@bluewin.ch

With the methods CSV.Get_Integer / CSV.Get_Long / CSV.Get_String etc. the
specific field data can be accessed.

Replace data in the table
You only can apply the methods of class CSV to a CSV-file after its content is read into a
CSV-string (e.g. MatchFile.$), cf. p. 95.

CSV.Put_String (VarStr:String,VarStr:CSV-String, VarInt:
LineNumber,VarInt:ColumnNumber)

The method puts a string into the Cell specified by line and column number.

Example:

CSV.Put_String('Catharine',MatchFile.$,2,1)

If the MatchFile is the address table (cf. p. 94), the method replaces “Viola” with “Catherine”.

http://www.eigergraphics.com/

100 eigerScript

V1.10 06.11.2013 S-TEC electronics AG www.eigergraphics.com

Revision History

2006: - First version in German called ‘eigerScript eVM Commands’. RFO
19.05.2010: - First release of the English version called ‘eigerScript eVM Software Manual’

(V1.10). RFO
18.06.2010: - Several corrections concerning orthographies, grammatik and layout.
 - List of registers (cf. p.6). CA
28.06.2010: - Passage in the Chapter of Class HotSpots added about the constants of the

Register eI.HS_EventType.
 - List of registers expanded (cf. p.6). CA
12.08.2010: - Translation of german remnants in text and images, which have not jet been

translated. CA
04.10.2010: - Addition: Draw.Line, Draw.Circle and Draw.Ellipse. GmD
05.11.2010: - Various corrections concerning layout and spelling.
 - Some new examples added. CA
10.12.2010: - Addition: Class Time (cf. p.54) and Str.Time and Str.Date (cf. p.22). CA
13.01.2011: - Addition: Remarks about Addition among strings (cf. p.13ff). CA
13.01.2011: - Addition: Remark concerning Loop - Endloop among strings (cf. p. 88). CA
11.05.2011: - Addition: Description of Display.CopyWindow() (cf. p. 11),
 - Addition: Description of Str.GetPosition_by_Char() (cf. p. 21). CA
25.05.2011: - Addition: Example for installing a HotSpot with eI.HotSpotTag (cf. p.49). CA
22.07.2011: - Addition: Description of Math.MOD_Integer() (cf. p.39). CA
02.09.2011: - Addition: Description of Binary.BGET_Integer() (cf. p.40). CA
24.10.2011: - Corrections in Binary-Class. CA
31.10.2011: - Addition: Completion of Class CSV (cf. p. 95ff). CA
31.10.2011: - Additions: Class CSV (cf. p. 95ff). CA
31.10.2011: - Addition of Hint 2 at CSV.GetMax_Lines() (cf. p.95). CA
06.11.2013: - Possibility to turn DebugMode off and on (cf. p.92). CA

Support

Have you got questions concerning programming language eigerScript or products of
eigergraphics? We hope you’ll find the answer at www.eigergraphics.com. Otherwise don’t
hesitate contacting us:

Phone: +41 41 754 50 10

Email:

http://www.eigergraphics.com/
http://www.eigergraphics.com/

	Content
	eigerScript
	Short description
	Views
	Syntax coloring
	Data types
	Constants
	Variables
	Registers

	eigerScript Methods
	Class eigerVideoEngine (EVE)
	Class Display
	Class File
	Class String
	The string concept in eigerScript
	Addition of strings

	Class Value
	Class Label
	Description of the eVM registers for a Label
	Fonts on the system

	Class Draw
	Class Math
	Integermath
	Conversions from Long to Integer
	Type conversions
	Calculations

	Class Binary
	Bit functions with 16-bit or 32-bit operands
	Logic functions with 16-bit or 32-bit operands

	Class HotSpot
	HotSpot Groups
	How the HotSpots work

	Class HotKey
	Class Time
	Class Timer
	Timer: EventSection
	Timer: TicSection

	Serial asynchronous Interfaces RS232/RS485
	Communication modes RS485
	Class Serial
	Initialize serial interface parameters
	Receive characters
	Send characters
	Send binary data (YMODEM)

	Serial Two Wire Interface I2C
	Class I2C
	Class Colors_15
	Change colours
	Manipulate colour channels
	Set or get colour values
	Exchange colour channels

	Class InOut
	Class Fill
	Class Load
	Class Transfer

	Program control flow
	Error handling
	Debugging code
	Turn debug mode OFF/ON

	Working with CSV-Files
	What are CSV-Files ?
	Class CSV
	Analyse table
	Retrieve data from the table
	Search data in the table
	Replace data in the table

	Revision History
	Support

